Name (Print):

MATH 304-01 Fall 2019 Test 1 September 25, 2019 Time Limit: 60 Minutes

This test contains 7 pages (including this cover page) and 6 problems. Check to see if any pages are missing. Enter all requested information on the top of this page. Question 1 is a **True/False** question. Clearly PRINT your correct answer. Question 2 is multiple choice.

You are required to show your work on Questions 3-5 on this exam. Question 6 is a bonus question. Only do this question when you finish other questions. The following rules apply:

- Turn off and put away your cell phone.
- No note nor book is allowed.
- Organize your work, in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive very little credit.
- Mysterious or unsupported answers will not receive full credit.

Do not write in the table to the right.

Question	Points	Score
1	30	
2	15	
3	20	
4	15	
5	20	
6	10	
Total:	110	

- 1. (30 points) For each statement below, indicate whether it is **True** or **False**:
 - (a) _____ If the matrix equation $A\mathbf{x} = \mathbf{b}$ is inconsistent, then **b** is not a linear combination of the columns of A.
 - (b) _____ The columns of a matrix A are linearly independent if and only if the equation $A\mathbf{x} = \mathbb{O}$ has the trivial solution.
 - (c) If $\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^3$ are linearly independent vectors and if v_3 is a linear combination of \mathbf{v}_1 and \mathbf{v}_2 , then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly dependent.
 - (d) _____ If A is a 4×6 matrix, then the columns of A are linearly dependent.
 - (e) If \mathbf{x} is a nontrivial solution of the homogeneous equation $A\mathbf{x} = \mathbb{O}$, then every entry in \mathbf{x} is nonzero.
 - (f) _____ Let A and B be matrices. If AB is defined, then $(AB)^T = A^T B^T$.
 - (g) If A is a square $n \times n$ matrix, then the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is an onto map from \mathbb{R}^n to \mathbb{R}^n .
 - (h) _____ Let A be a square $n \times n$ matrix. If the equation $A\mathbf{x} = \mathbf{b}$ is consistent for some vector $\mathbf{b} \in \mathbb{R}^n$, then A is invertible.
 - (i) _____ If the columns of a square $n \times n$ matrix A are linearly independent, then A^T is invertible.
 - (j) _____ If A and B are square $n \times n$ matrices and $AB = I_n$, then both A and B are invertible.

- 2. (15 points) Answer the following multiple choice questions.
 - (i) Consider a system of linear equations with **augmented** matrix

$$C = \begin{pmatrix} 1 & 2 & -1 & 3 & | & 3 \\ 0 & 2 & 0 & -3 & | & 1 \\ 0 & 0 & -1 & 4 & | & -3 \end{pmatrix}.$$

Circle ALL the **correct** answers.

- (a) This system has 4 variables and 3 equations.
- (b) This system has two free variables.
- (c) The system has a unique solution since C has a pivot in every row.
- (d) The system has infinitely many solutions since it has a free variable.
- (e) This system is inconsistent since it has a nonzero row.
- (ii) Let T be a linear transformation with standard matrix

$$A = \begin{pmatrix} 1 & 2 & 0 & -1 \\ 0 & 2 & -2 & 6 \\ 0 & 0 & 3 & 4 \end{pmatrix}.$$

Circle ALL the correct answers.

- (a) The domain of T is \mathbb{R}^3 .
- (b) The codomain of T is \mathbb{R}^3 .
- (c) T is one to one.
- (d) T is onto.
- (e) T is invertible since A has a pivot position in every row.
- (*iii*) Let A be a square 4×4 matrix. Assume that the equation $A\mathbf{x} = \mathbf{b}$ is **inconsistent** for some vector $\mathbf{b} \in \mathbb{R}^4$. Which of the following statements are **correct**?
 - (a) The equation $A\mathbf{x} = \mathbb{O}$ has only trivial solution.
 - (b) The equation $A\mathbf{x} = \mathbb{O}$ has infinitely many solutions.
 - (c) The columns of A do not span \mathbb{R}^4 .
 - (d) The columns of A span \mathbb{R}^4 .
 - (e) A is not invertible.

3. (20 points) Let $T: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ be a linear transformation with standard matrix

$$A = \begin{pmatrix} 1 & 0 & 1 & -1 \\ 2 & 1 & 3 & 3 \\ 1 & -1 & 1 & -4 \end{pmatrix}.$$

- (a) Find the reduced row-echolon form (RREF) of A. List all the elementary row operations performed.
- (b) Which columns of A are pivot columns?
- (c) Find all vectors $\mathbf{x} \in \mathbb{R}^4$ such that $T(\mathbf{x}) = \mathbb{O}$. Write the answers in parametric vector form.
- (d) Is T one to one ? onto? Justify your answer.

4. (15 points) Let $A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & -1 & 4 \\ 1 & -1 & 4 \end{pmatrix}$.

1. Determine whether A is invertible or not. Find A^{-1} if it exists.

2. Is A^T invertible? Find $(A^T)^{-1}$ if it exists.

5. (20 points) Let $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix}x_1 - x_2 + x_3\\2x_2 + x_3\\x_1 + 5x_2 + 4x_3\end{bmatrix}.$$

- (a) Determine the standard matrix A for T.
- (b) Show that T is not onto. Describe the set of all $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \in \mathbb{R}^3$ for which \mathbf{y} is in the range of T.

6. (10 points) (Bonus) Let A be an $m \times n$ matrix with $1 \le m < n$. Is it possible to find an $n \times m$ matrix B such that $BA = I_n$? Explain.