MATH 304-01
Fall 2019
Exam 2
October 30, 2019
Time Limit: 90 Minutes

Name (Print):	
,		,	

This exam contains 3 pages (including this cover page) and 7 problems. Check to see if any pages are missing. Enter all requested information on the top of this page. Question 1 is a **True/False** question. Clearly CIRCLE your correct answer. You are required to show your work on Questions 2 to 7 on this exam.

Instruction:

- All solutions must be written on the blue book.
- At the end of the exam, please turn in both this exam and the blue book.
- Turn off and put away your cell phone.
- Notes, the textbooks, and digital devices are not permitted.
- Discussion or collaboration is not allowed.
- Justify your answers, and write clearly.
- Mysterious or unsupported answers will not receive full credit.

Do not write in the table to the right.

Question	Points	Score
1	10	
2	15	
3	10	
4	15	
5	20	
6	25	
7	10	
Total:	105	

- 1. (10 points) In each question circle either True or False. No justification is needed.
 - (a) <u>True False</u> Let A be a square matrix. If the columns of A are linearly dependent, then det(A) = 0.
 - (b) <u>True False</u> If A is a 5×5 matrix and $ColA = \mathbb{R}^5$, then for each $\mathbf{b} \in \mathbb{R}^5$, the equation $A\mathbf{x} = \mathbf{b}$ has a unique solution.
 - (c) <u>True False</u> Let A be a 5×8 matrix. If the null space of A has a basis consisting of 2 vectors. Then rank(A) = 3.
 - (d) True False If A and B are 3×3 matrices, then $\det(A + B) = \det(A) + \det(B)$.
 - (e) True False The column space of A is the range of the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$.
 - (f) True False Let A be an $m \times n$ matrix. Then $\dim \operatorname{Col} A + \dim \operatorname{Row} A = n$.
 - (g) <u>True False</u> If two matrices A and B are row equivalent, then their row spaces are the same and if B is in row echelon form, then the nonzero rows of B form a basis for the row space of A.
 - (h) <u>True False</u> If B is any echelon form of A, then the pivot columns of B form a basis for the column space of A.
 - (i) <u>True False</u> Let V be a vector space. If $S = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p\}$ is a set of vectors in V and S spans V, then some subset of S is a basis for V.
 - (j) True False Let V be a finite-dimensional vector space. If every set of p elements in V fails to span V, then dim V > p.
- 2. (15 points) Which of the following sets is a subspace of the given vector space? If it is not a subspace, find a specific example (two vectors or a vector and a scalar) to show that it is not a subspace.
 - (a) The set $H = \left\{ \begin{bmatrix} 2a+b\\a+b\\a-3b \end{bmatrix} : a,b \text{ in } \mathbb{R} \right\}$ in the vector space \mathbb{R}^3 .
 - (b) The set $H=\{\begin{bmatrix} a \\ b \end{bmatrix}: a^2+4b^2 \leq 1, a, b \text{ in } \mathbb{R}\}$ in the vector space $\mathbb{R}^2.$
 - (c) The set H of all polynomials p(t) in \mathbb{P}_2 satisfying p(0) = 1, where \mathbb{P}_2 is the vector space of all polynomials of degree at most 2.
- 3. (10 points) Compute the following determinants.

(a)
$$\begin{vmatrix} 1 & -2 & -2 \\ 2 & 1 & 2 \\ -1 & 3 & 3 \end{vmatrix}$$

(b)
$$\begin{vmatrix} 0 & 1 & 0 & 2 & -6 \\ 4 & 10 & 30 & 20 & 19 \\ 0 & 2 & -1 & -2 & -9 \\ 0 & 1 & 0 & -2 & 0 \\ 0 & 2 & 0 & -6 & 0 \end{vmatrix}$$

- 4. (15 points) Let A, B and C be 5×5 matrices. Assume that $\det(A) = 2, \det(B) = -3$ and $\det(C) = -4$. Compute
 - (a) $\det(ABC^2)$.
 - (b) $\det(A^{-2}B^2C^T)$.
 - (c) $\det(2A)$.
 - (d) Let P be an invertible 5×5 matrix. What is $\det(P^TAP^{-1})$?
 - (e) Assume that Q is a 5×5 matrix such that $Q^T A Q = A$. Show that $\det Q = \pm 1$.
- 5. (20 points) Assume that the matrix A is row equivalent to the matrix B, where

- (a) Find Rank A, dim Nul A and dim Row A.
- (b) Find a basis for ColA.
- (c) Find a basis for Row A.
- (d) Find a basis for NulA.
- 6. (25 points) Let $p_1(t) = t + 1$, $p_2(t) = t^2 + t$ and $p_3(t) = t^2 + t 2$ be polynomials in \mathbb{P}_2 , the vector space of all polynomials in the variable t of degree at most 2. Let $\mathcal{B} = \{1, t, t^2\}$ be a basis for \mathbb{P}_2 .
 - (a) Show that the set $\{p_1(t), p_2(t), p_3(t)\}$ is linearly independent (Hint. Use \mathcal{B} -coordinate vectors or definition of linear independence).
 - (b) Without further calculation explain why $C = \{p_1(t), p_2(t), p_3(t)\}$ is a basis for \mathbb{P}_2 ?
 - (c) Find the change-of-coordinates matrix $P(\mathcal{B} \leftarrow \mathcal{C})$ from \mathcal{C} to \mathcal{B} .
 - (d) Let $p(t) = t^2 + 4t + 5$. Find the coordinate vector $[p(t)]_{\mathcal{C}}$.
 - (e) Suppose $q(t) \in \mathbb{P}_2$ and $[q(t)]_{\mathcal{C}} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$. Find the polynomial q(t).
- 7. (10 points) Let $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ be a basis for a vector space V. Show that for each $\mathbf{x} \in V$, there exists a unique set of scalars c_1, c_2, \dots, c_n such that $\mathbf{x} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + \dots + c_n \mathbf{b}_n$.