Name (Print):

This exam contains 6 pages (including this cover page) and 7 problems. Check to see if any pages are missing. Enter all requested information on the top of this page. Question 1 is a **True/False** question. Clearly CIRCLE your correct answer. You are required to show your work on Questions 2 to 7 on this exam.

Instruction:

- All solutions must be written on the blue book.
- At the end of the exam, please turn in both this exam and the blue book.
- Turn off and put away your cell phone.
- Notes, the textbooks, and digital devices are not permitted.
- Discussion or collaboration is not allowed.
- Justify your answers, and write clearly.
- Mysterious or unsupported answers will not receive full credit.

Do not write in the table to the right.

Question	Points	Score
1	10	
2	15	
3	10	
4	15	
5	20	
6	25	
7	10	
Total:	105	

- 1. (10 points) In each question circle either True or False. No justification is needed.
 - (a) <u>**True**</u> Let A be a square matrix. If the columns of A are linearly dependent, then det(A) = 0.
 - (b) <u>**True</u>** If A is a 5×5 matrix and $\text{Col}A = \mathbb{R}^5$, then for each $\mathbf{b} \in \mathbb{R}^5$, the equation $A\mathbf{x} = \mathbf{b}$ has a unique solution.</u>
 - (c) <u>False</u> Let A be a 5×8 matrix. If the null space of A has a basis consisting of 2 vectors. Then rank(A) = 3.
 - (d) **<u>False</u>** If A and B are 3×3 matrices, then $\det(A + B) = \det(A) + \det(B)$.
 - (e) <u>**True</u>** The column space of A is the range of the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$.</u>
 - (f) **<u>False</u>** Let A be an $m \times n$ matrix. Then dim ColA + dim RowA = n.
 - (g) <u>**True**</u> If two matrices A and B are row equivalent, then their row spaces are the same and if B is in row echelon form, then the nonzero rows of B form a basis for the row space of A.
 - (h) <u>False</u> If B is any echelon form of A, then the pivot columns of B form a basis for the column space of A.
 - (i) <u>**True**</u> Let V be a vector space. If $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p}$ is a set of vectors in V and S spans V, then some subset of S is a basis for V.
 - (j) <u>**True**</u> Let V be a finite-dimensional vector space. If every set of p elements in V fails to span V, then dim V > p.
- 2. (15 points) Which of the following sets is a subspace of the given vector space? If it is not a subspace, find a specific example (two vectors or a vector and a scalar) to show that it is not a subspace.

(a) The set
$$H = \left\{ \begin{bmatrix} 2a+b\\a+b\\a-3b \end{bmatrix} : a, b \text{ in } \mathbb{R} \right\}$$
 in the vector space \mathbb{R}^3 .

- (b) The set $H = \{ \begin{bmatrix} a \\ b \end{bmatrix} : a^2 + 4b^2 \le 1, a, b \text{ in } \mathbb{R} \}$ in the vector space \mathbb{R}^2 .
- (c) The set H of all polynomials p(t) in \mathbb{P}_2 satisfying p(0) = 1, where \mathbb{P}_2 is the vector space of all polynomials of degree at most 2.

Solutions.

(a) We have
$$H = \text{Span}\{v_1, v_2\}$$
, where $v_1 = \begin{bmatrix} 2\\1\\1 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 1\\1\\-1 \end{bmatrix}$. So H is a subspace of \mathbb{R}^3 .

- (b) Let $v = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Then $v \in H$ as $1^2 + 4 \cdot 0^2 = 1 \le 1$. Let c = 2. Then $cv = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$. However $cv \notin H$ since $2^2 + 4 \cdot 0^2 = 4 > 1$. We can also take $u = \begin{bmatrix} 0 \\ \frac{1}{2} \end{bmatrix}$. Then $u, v \in H$ but $u + v \notin H$. Hence H is not a subspace of \mathbb{R}^2 .
- (c) H is not a subspace of \mathbb{P}_2 since the zero polynomial is not in H.

- 3. (10 points) Compute the following determinants.
 - (a) $\begin{vmatrix} 1 & -2 & -2 \\ 2 & 1 & 2 \\ -1 & 3 & 3 \end{vmatrix}$ (b) $\begin{vmatrix} 0 & 1 & 0 & 2 & -6 \\ 4 & 10 & 30 & 20 & 19 \\ 0 & 2 & -1 & -2 & -9 \\ 0 & 1 & 0 & -2 & 0 \\ 0 & 2 & 0 & -6 & 0 \end{vmatrix}$

Solutions.

(a)
$$\begin{vmatrix} 1 & -2 & -2 \\ 2 & 1 & 2 \\ -1 & 3 & 3 \end{vmatrix} \begin{vmatrix} 1 & -2 \\ 2 & 1 & 2 \\ -1 & 3 & 3 \end{vmatrix} = 1 \cdot 1 \cdot 3 + (-2) \cdot 2 \cdot (-1) + (-2) \cdot 2 \cdot 3 - (-1) \cdot 1 \cdot (-2) - 3 \cdot 2 \cdot 1 - 3 \cdot 2 \cdot (-2) \\ = 3 + 4 - 12 - 2 - 6 + 12 = -1.$$

(b)
$$\begin{vmatrix} 0 & 1 & 0 & 2 & -6 \\ 4 & 10 & 30 & 20 & 19 \\ 0 & 2 & -1 & -2 & -9 \\ 0 & 1 & 0 & -2 & 0 \\ 0 & 2 & 0 & -6 & 0 \end{vmatrix} = -4 \begin{vmatrix} 1 & 0 & 2 & -6 \\ 2 & -1 & -2 & -9 \\ 1 & 0 & -2 & 0 \\ 2 & 0 & -6 & 0 \end{vmatrix} = (-4)(-1) \begin{vmatrix} 1 & 2 & -6 \\ 1 & -2 & 0 \\ 2 & -6 & 0 \end{vmatrix} = (-4)(-1) \begin{vmatrix} 1 & 2 & -6 \\ 1 & -2 & 0 \\ 2 & -6 & 0 \end{vmatrix} = = 4(-6) \begin{vmatrix} 1 & -2 \\ 2 & -6 \end{vmatrix} = (-24)(1(-6) - 2(-2)) = 48.$$

- 4. (15 points) Let A, B and C be 5×5 matrices. Assume that $\det(A) = 2, \det(B) = -3$ and $\det(C) = -4$. Compute
 - (a) $\det(ABC^2)$.
 - (b) $\det(A^{-2}B^2C^T)$.
 - (c) det(2A).
 - (d) Let P be an invertible 5×5 matrix. What is det $(P^T A P^{-1})$?
 - (e) Assume that Q is a 5 × 5 matrix such that $Q^T A Q = A$. Show that det $Q = \pm 1$.

Solutions.

- (a) $\det(ABC^2) = \det(a) \det(B) \det(C^2) = \det(A) \det(B) \det(C)^2 = 2(-3)(-4)^2 = -96.$
- (b) $\det(A^{-2}B^2C^T) = \det(A^{-2})\det(B^2)\det(C^T) = \frac{1}{\det(A)^2}\det(B)^2\det(C) = \frac{1}{2^2}\cdot(-3)^2\cdot(-4) = -9.$
- (c) $det(2A) = 2^5 det(A) = 31 \cdot 2 = 64.$
- (d) $\det(P^T A P^{-1}) = \det(P^T) \det(A) \det(P^{-1}) = \det(P) \det(A) \det(P)^{-1} = \det(A).$
- (e) Since $Q^T A Q = A$, we have $\det(A) = \det(Q^T) \det(A) \det(Q) = \det(Q)^2 \det(A)$. Since $\det(A) = 2$, we see that $\det(Q)^2 = 1$. Thus $\det Q = \pm 1$.

5. (20 points) Assume that the matrix A is row equivalent to the matrix B, where

- (a) Find RankA, dim Nul A and dim RowA.
- (b) Find a basis for ColA.
- (c) Find a basis for Row A.
- (d) Find a basis for NulA.

Solutions.

- (a) $\operatorname{Rank} A = 2$ since A has two pivot columns.
 - dim RowA = 2 since B is in row echelon form, B has two non-zero rows and B is row equivalent to A.
 - dim NulA = 5 2 = 3 by applying the Rank Theorem, where A has five columns.
- (b) $\left\{ \begin{bmatrix} 1\\3\\2\\1\end{bmatrix}, \begin{bmatrix} -1\\-3\\-1\\0\end{bmatrix} \right\}$ is a basis for Col*A* as these are the pivot columns of *A*.
- (c) $\{(1, 2, -1, 1, 2), (0, 0, 1, 3, -1)\}$ is a basis for RowA as these are the non-zero rows of an echelon form of A (which are the rows of B).

(d)
$$\left\{ \begin{bmatrix} -2\\1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} -4\\0\\-3\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} -1\\0\\1\\0\\1 \end{bmatrix} \right\}$$
 is a basis for NulA.

We need to solve the system with augmented matrix $(B|\mathbf{0})$.

Hence

$$\begin{cases} x_1 + 2x_2 + 4x_4 + x_5 = 0\\ x_3 + 3x_4 - x_5 = 0 \end{cases}$$

or

$$\begin{cases} x_1 = -2x_2 - 4x_4 - x_5 \\ x_3 = -3x_4 + x_5 \end{cases}$$

 So

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -2x_2 - 4x_4 - x_5 \\ x_2 \\ -3x_4 + x_5 \\ x_4 \\ x_5 \end{bmatrix} = x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -4 \\ 0 \\ -3 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

- 6. (25 points) Let $p_1(t) = t + 1$, $p_2(t) = t^2 + t$ and $p_3(t) = t^2 + t 2$ be polynomials in \mathbb{P}_2 , the vector space of all polynomials in the variable t of degree at most 2. Let $\mathcal{B} = \{1, t, t^2\}$ be a basis for \mathbb{P}_2 .
 - (a) Show that the set $\{p_1(t), p_2(t), p_3(t)\}$ is linearly independent (Hint. Use \mathcal{B} -coordinate vectors or definition of linear independence).
 - (b) Without further calculation explain why $\mathcal{C} = \{p_1(t), p_2(t), p_3(t)\}$ is a basis for \mathbb{P}_2 ?
 - (c) Find the change-of-coordinates matrix $\underset{\mathcal{B}\leftarrow\mathcal{C}}{P}$ from \mathcal{C} to \mathcal{B} .
 - (d) Let $p(t) = t^2 + 4t + 5$. Find the coordinate vector $[p(t)]_{\mathcal{C}}$.
 - (e) Suppose $q(t) \in \mathbb{P}_2$ and $[q(t)]_{\mathcal{C}} = \begin{bmatrix} 1\\ -1\\ 2 \end{bmatrix}$. Find the polynomial q(t).

Solutions.

(a) We use the \mathcal{B} -coordinates. We have

$$[p_1(t)]_{\mathcal{B}} = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, [p_2(t)]_{\mathcal{B}} = \begin{bmatrix} 0\\1\\1 \end{bmatrix} \text{ and } [p_3(t)]_{\mathcal{B}} = \begin{bmatrix} -2\\1\\1 \end{bmatrix}.$$
Consider the matrix $A = [[p_1(t)]_{\mathcal{B}} [p_2(t)]_{\mathcal{B}} [p_2(t)]_{\mathcal{B}} = \begin{pmatrix} 1 & 0 & -2\\1 & 1 & -1 \end{pmatrix}$. Bow reduce A to an

Consider the matrix $A = [[p_1(t)]_{\mathcal{B}} [p_2(t)]_{\mathcal{B}} [p_3(t)]_{\mathcal{B}}] = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$. Row reduce A to an

echelon form:

$$\begin{pmatrix} 1 & 0 & -2 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{R_2 - R_1} \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 3 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{R_3 - R_2} \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & -2 \end{pmatrix}$$

Since every columns of A is a pivot columns, the set $\{[p_1(t)]_{\mathcal{B}} [p_2(t)]_{\mathcal{B}} [p_3(t)]_{\mathcal{B}}\}$ is linearly independent. Since the coordinate mapping is an isomorphism, we deduce that the set $\{p_1(t), p_2(t), p_3(t)\}$ is linearly independent.

- (b) As dim $\mathbb{P}_2 = 3$ and \mathcal{C} has exactly three vectors and is a linearly independent set by part (a), the Basis Theorem implies that \mathcal{C} is a basis for \mathbb{P}_2 .
- (c) The change-of-coordinates matrix $\underset{\mathcal{B}\leftarrow\mathcal{C}}{P} = [[p_1(t)]_{\mathcal{B}} [p_2(t)]_{\mathcal{B}} [p_3(t)]_{\mathcal{B}}] = \begin{pmatrix} 1 & 0 & -2\\ 1 & 1 & 1\\ 0 & 1 & 1 \end{pmatrix}.$
- (d) We have $\underset{\mathcal{B}\leftarrow\mathcal{C}}{P}[p(t)]_{\mathcal{C}} = [p(t)]_{\mathcal{B}}$. Thus to find $[p(t)]_{\mathcal{C}}$, we need to solve the system with

augmented matrix $(\underset{\mathcal{B}\leftarrow\mathcal{C}}{P}[p(t)]_{\mathcal{B}})$, where $[p(t)]_{\mathcal{B}} = \begin{bmatrix} 5\\4\\1 \end{bmatrix}$. We have

$$\begin{pmatrix} P \\ \mathcal{B} \leftarrow \mathcal{C} \end{bmatrix} p(t) \end{bmatrix}_{\mathcal{B}}) = \begin{pmatrix} 1 & 0 & -2 & 5 \\ 1 & 1 & 1 & 4 \\ 0 & 1 & 1 & 1 \end{pmatrix} \xrightarrow{R_2 - R_1} \begin{pmatrix} 1 & 0 & -2 & 5 \\ 0 & 1 & 3 & -1 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$

$$\begin{array}{c} R_3 - R_2 \\ R_3 - R_2 \\ \hline \end{array} \begin{pmatrix} 1 & 0 & -2 & 5 \\ 0 & 1 & 3 & -1 \\ 0 & 0 & -2 & 2 \end{pmatrix} \xrightarrow{R_3 / (-2)} \begin{pmatrix} 1 & 0 & -2 & 5 \\ 0 & 1 & 3 & -1 \\ 0 & 0 & 1 & -1 \end{pmatrix}$$

$$\stackrel{R_2-3R_3}{\longrightarrow} \begin{pmatrix} 1 & 0 & -2 & 5\\ 0 & 1 & 0 & 2\\ 0 & 0 & 1 & -1 \end{pmatrix} \stackrel{R_1+2R_3}{\longrightarrow} \begin{pmatrix} 1 & 0 & 0 & 3\\ 0 & 1 & 0 & 2\\ 0 & 0 & 1 & -1 \end{pmatrix}.$$

Therefore $[p(t)]_{\mathcal{C}} = \begin{bmatrix} 3\\ 2\\ -1 \end{bmatrix}$.

- (e) We have $[q(t)]_{\mathcal{B}} = \underset{\mathcal{B}\leftarrow\mathcal{C}}{P}[q(t)]_{\mathcal{C}} = \begin{pmatrix} 1 & 0 & -2\\ 1 & 1 & 1\\ 0 & 1 & 1 \end{pmatrix} \begin{bmatrix} 1\\ -1\\ 2 \end{bmatrix} = \begin{bmatrix} -3\\ 2\\ 1 \end{bmatrix}.$ Thus $q(t) = -3 \cdot 1 + 2 \cdot t + 1 \cdot t^2 = t^2 + 2t - 3.$
- 7. (10 points) Let $\mathcal{B} = {\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_n}$ be a basis for a vector space V. Show that for each $\mathbf{x} \in V$, there exists a unique set of scalars c_1, c_2, \cdots, c_n such that $\mathbf{x} = c_1\mathbf{b}_1 + c_2\mathbf{b}_2 + \cdots + c_n\mathbf{b}_n$.

Solutions. This is the Unique Representation Theorem (Theorem 7 in Section 4.4 of the textbook.)

Since \mathcal{B} spans V and $\mathbf{x} \in V$, there exists scalars c_1, c_2, \cdots, c_n such that $\mathbf{x} = c_1\mathbf{b}_1 + c_2\mathbf{b}_2 + \cdots + c_n\mathbf{b}_n$. Assume that \mathbf{x} also has a representation $\mathbf{x} = d_1\mathbf{b}_1 + d_2\mathbf{b}_2 + \cdots + d_n\mathbf{b}_n$, for scalars d_1, d_2, \cdots, d_n . By subtracting, we have

$$0 = x - x = x = (c_1 - d_1)\mathbf{b}_1 + (c_2 - d_2)\mathbf{b}_2 + \dots + (c_n - d_n)\mathbf{b}_n.$$

Since \mathcal{B} is linearly independent, all the weights in the previous equation must be 0, that is, $c_1 - d_1 = 0, c_2 - d_2 = 0, \dots, c_n - d_n = 0$. Thus $c_i = d_i$ for all $1 \le i \le n$.