Semimagic generating functions and constituents

(general form, with cubic data)

Notation:
S: semimagic squares (all positive values).
s: normalized squares (symmetry types).
R : reduced squares (least element is 0).
r: reduced normalized squares (reduced symmetry types).
gf: generating function in some form.
gfsum: generating function as a sum of simple terms.
c: Cubic (fixed strict upper bound; weak upper bound for reduced).
a: Affine (fixed magic sum).
We start by recomputing rs from the semimagic count. From the Latte results we get the closed Ehrhart g.f. of each flat, which depends on whether we're doing cubic or affine. We also need
$\mathrm{p}=$ period (or truncated period in affine),
$\mathrm{d}=$ degree/dimension,
RtoSfactor = the rational function that multiplies Rgf to Sgf and rgf to sgf.
enddegree: The number of terms of the sequences to print out.
$>$ enddegree: $=20$;

$$
\text { enddegree:= } 20
$$

This is for cubic: set up main constants.
$>\mathrm{d}:=5$; $\mathrm{p}:=60$;
RtoSfactor:=x^2/(1-x)^2;

$$
\begin{aligned}
d & :=5 \\
p & :=60
\end{aligned}
$$

$$
\text { RtoSfactor }:=\frac{x^{2}}{(1-x)^{2}}
$$

This is also for cubic: set up simplex data.
$>$ simplexname[1]:="OABC": ehrgf[1]:=1/((1-x)^3*(1-x^2)): dimen
[1]:=3:
simplexname [2]:="OEE2": ehrgf[2]:=1/((1-x)*(1-x^2)*(1-x^3)):
dimen[2]:=2:
simplexname [3]:="OAE2": ehrgf[3]:=1/((1-x)*(1-x^2)^2): dimen
[3]:=2:
simplexname [4]:="ADE2": ehrgf[4]:=1/((1-x^2)^3): dimen[4]:=2:
simplexname [5] :="DE1E2": ehrgf[5]:=1/((1-x^2)^2*(1-x^3)):
dimen[5]:=2:
simplexname [6] :="OCE": ehrgf[6]:= $1 /\left((1-x)^{\wedge} 2 *\left(1-x^{\wedge} 3\right)\right)$: dimen
[6]:=2:
simplexname [7] :="BDE1": ehrgf[7]:=1/((1-x)*(1-x^2)*(1-x^3)):
dimen[7]:=2:

```
simplexname [8]:="ABD": ehrgf[8]:= 1/((1-x)*(1-x^2)^2) : dimen
[8]:=2 :
simplexname[9]:="FG1": ehrgf[9]:= 1/((1-x^3)*(1-x^5)) : dimen
[9]:=1:
simplexname[10]:="EF": ehrgf[10]:= 1/((1-x^3)^2) : dimen[10]:=
1:
simplexname[11]:="OG": ehrgf[11]:= 1/((1-x)*(1-x^4)) : dimen
[11]:=1:
simplexname[12]:="FG": ehrgf[12]:= 1/((1-x^3)*(1-x^4)) : dimen
[12]:=1:
simplexname[13]:="AF": ehrgf[13]:= 1/((1-x^^2)*(1-x^3)) : dimen
[13]:=1:
simplexname[14]:="DG": ehrgf[14]:= 1/((1-x^2)*(1-x^4)) : dimen
[14]:=1:
simplexname[15]:="DG2": ehrgf[15]:= 1/((1-x^2)*(1-x^5)) : dimen
[15]:=1:
simplexname[16]:="DE": ehrgf[16]:= 1/((1-x^2)*(1-x^3)) : dimen
[16]:=1:
simplexname[17]:="H": ehrgf[17] := 1/(1-x^5) : dimen[17]:=0:
for n from 1 to 17 do print(simplexname[n], dimen[n], ehrgf[n])
; od;
\[
\text { "OABC", 3, } \frac{1}{(1-x)^{3}\left(1-x^{2}\right)}
\]
"OEE2", 2, \(\frac{1}{(1-x)\left(1-x^{2}\right)\left(1-x^{3}\right)}\)
\[
\text { "OAE2", } 2, \frac{1}{(1-x)\left(1-x^{2}\right)^{2}}
\]
\[
\text { "ADE2", 2, } \frac{1}{\left(1-x^{2}\right)^{3}}
\]
\[
\text { "DE1E2", } 2, \frac{1}{\left(1-x^{2}\right)^{2}\left(1-x^{3}\right)}
\]
\[
\text { "OCE", 2, } \frac{1}{(1-x)^{2}\left(1-x^{3}\right)}
\]
\[
\text { "BDE1", 2, } \frac{1}{(1-x)\left(1-x^{2}\right)\left(1-x^{3}\right)}
\]
\[
\text { "ABD", 2, } \frac{1}{(1-x)\left(1-x^{2}\right)^{2}}
\]
\[
\text { "FG1", } 1, \frac{1}{\left(1-x^{3}\right)\left(1-x^{5}\right)}
\]
```

$$
\begin{aligned}
& \text { "EF", } 1, \frac{1}{\left(1-x^{3}\right)^{2}} \\
& \text { "OG", } 1, \frac{1}{(1-x)\left(1-x^{4}\right)} \\
& \text { "FG", } 1, \frac{1}{\left(1-x^{3}\right)\left(1-x^{4}\right)} \\
& \text { "AF", } 1, \frac{1}{\left(1-x^{2}\right)\left(1-x^{3}\right)} \\
& \text { "DG", } 1, \frac{1}{\left(1-x^{2}\right)\left(1-x^{4}\right)} \\
& \text { "DG2", } 1, \frac{1}{\left(1-x^{2}\right)\left(1-x^{5}\right)} \\
& \text { "DE", } 1, \frac{1}{\left(1-x^{2}\right)\left(1-x^{3}\right)} \\
& \text { "H", } 0, \frac{1}{1-x^{5}}
\end{aligned}
$$

The closed E.g.f. is converted to the open E.g.f.:
$>$ for n from 1 to 17 do mu [n]: $=(-1)^{\wedge}($ dimen [1]-dimen [n]) :
od:
$\mathrm{mu}[14]:=2 * \mathrm{mu}[14]$:
for n from 1 to 17 do openehrgf[n] :=simplify (-(-1)^dimen[n]*subs (x=1/x,ehrgf[n])):
od:
for n from 1 to 17 do
rgfterm[n]:=openehrgf[n]:
od:
Now compute the number of reduced symmetry types:
> rgfsum:=sum(mu[nn]*rgfterm[nn],nn=1..17);
rgf:=simplify(rgfsum):

$$
\begin{aligned}
& \text { rgfsum }:=\frac{x^{5}}{(x-1)^{3}\left(x^{2}-1\right)}+\frac{2 x^{6}}{(x-1)\left(x^{2}-1\right)\left(x^{3}-1\right)}+\frac{2 x^{5}}{(x-1)\left(x^{2}-1\right)^{2}} \\
& \quad+\frac{x^{6}}{\left(x^{2}-1\right)^{3}}+\frac{x^{7}}{\left(x^{2}-1\right)^{2}\left(x^{3}-1\right)}+\frac{x^{5}}{(x-1)^{2}\left(x^{3}-1\right)}+\frac{x^{8}}{\left(x^{3}-1\right)\left(x^{5}-1\right)} \\
& \quad+\frac{x^{6}}{\left(x^{3}-1\right)^{2}}+\frac{x^{5}}{(x-1)\left(x^{4}-1\right)}+\frac{x^{7}}{\left(x^{3}-1\right)\left(x^{4}-1\right)}+\frac{2 x^{5}}{\left(x^{2}-1\right)\left(x^{3}-1\right)} \\
& \quad+\frac{2 x^{6}}{\left(x^{2}-1\right)\left(x^{4}-1\right)}+\frac{x^{7}}{\left(x^{2}-1\right)\left(x^{5}-1\right)}+\frac{x^{5}}{x^{5}-1}
\end{aligned}
$$

We need the total number of reduced squares, Rgf:
> Rgfsum:=72*rgfsum;
Rgf:=simplify (Rgfsum) :

$$
\begin{aligned}
& \text { Rgfsum }:=\frac{72 x^{5}}{(x-1)^{3}\left(x^{2}-1\right)}+\frac{144 x^{6}}{(x-1)\left(x^{2}-1\right)\left(x^{3}-1\right)}+\frac{144 x^{5}}{(x-1)\left(x^{2}-1\right)^{2}} \\
& \quad+\frac{72 x^{6}}{\left(x^{2}-1\right)^{3}}+\frac{72 x^{7}}{\left(x^{2}-1\right)^{2}\left(x^{3}-1\right)}+\frac{72 x^{5}}{(x-1)^{2}\left(x^{3}-1\right)}+\frac{72 x^{8}}{\left(x^{3}-1\right)\left(x^{5}-1\right)} \\
& \quad+\frac{72 x^{6}}{\left(x^{3}-1\right)^{2}}+\frac{72 x^{5}}{(x-1)\left(x^{4}-1\right)}+\frac{72 x^{7}}{\left(x^{3}-1\right)\left(x^{4}-1\right)}+\frac{144 x^{5}}{\left(x^{2}-1\right)\left(x^{3}-1\right)} \\
& \quad+\frac{144 x^{6}}{\left(x^{2}-1\right)\left(x^{4}-1\right)}+\frac{72 x^{7}}{\left(x^{2}-1\right)\left(x^{5}-1\right)}+\frac{72 x^{5}}{x^{5}-1}
\end{aligned}
$$

Hence Sgf, the g.f. of the number of semimagic squares, equals
> Sgfsum:=RtoSfactor*Rgfsum;
Sgf:=simplify(Sgfsum):

$$
\begin{aligned}
& \text { Sgfsum }:=\frac{1}{(1-x)^{2}}\left(x ^ { 2 } \left(\frac{72 x^{5}}{(x-1)^{3}\left(x^{2}-1\right)}+\frac{144 x^{6}}{(x-1)\left(x^{2}-1\right)\left(x^{3}-1\right)}\right.\right. \\
& \quad+\frac{144 x^{5}}{(x-1)\left(x^{2}-1\right)^{2}}+\frac{72 x^{6}}{\left(x^{2}-1\right)^{3}}+\frac{72 x^{7}}{\left(x^{2}-1\right)^{2}\left(x^{3}-1\right)}+\frac{72 x^{5}}{(x-1)^{2}\left(x^{3}-1\right)} \\
& \quad+\frac{72 x^{8}}{\left(x^{3}-1\right)\left(x^{5}-1\right)}+\frac{72 x^{6}}{\left(x^{3}-1\right)^{2}}+\frac{72 x^{5}}{(x-1)\left(x^{4}-1\right)}+\frac{72 x^{7}}{\left(x^{3}-1\right)\left(x^{4}-1\right)} \\
& \left.\left.\quad+\frac{144 x^{5}}{\left(x^{2}-1\right)\left(x^{3}-1\right)}+\frac{144 x^{6}}{\left(x^{2}-1\right)\left(x^{4}-1\right)}+\frac{72 x^{7}}{\left(x^{2}-1\right)\left(x^{5}-1\right)}+\frac{72 x^{5}}{x^{5}-1}\right)\right)
\end{aligned}
$$

The g.f. of the total number of symmetry types, sgf:
> sgfsum:=RtoSfactor*rgfsum;
sgf:=simplify (sgfsum):
sgfsum $:=\frac{1}{(1-x)^{2}}\left(x^{2}\left(\frac{x^{5}}{(x-1)^{3}\left(x^{2}-1\right)}+\frac{2 x^{6}}{(x-1)\left(x^{2}-1\right)\left(x^{3}-1\right)}\right.\right.$

$$
\begin{aligned}
& +\frac{2 x^{5}}{(x-1)\left(x^{2}-1\right)^{2}}+\frac{x^{6}}{\left(x^{2}-1\right)^{3}}+\frac{x^{7}}{\left(x^{2}-1\right)^{2}\left(x^{3}-1\right)}+\frac{x^{5}}{(x-1)^{2}\left(x^{3}-1\right)} \\
& +\frac{x^{8}}{\left(x^{3}-1\right)\left(x^{5}-1\right)}+\frac{x^{6}}{\left(x^{3}-1\right)^{2}}+\frac{x^{5}}{(x-1)\left(x^{4}-1\right)}+\frac{x^{7}}{\left(x^{3}-1\right)\left(x^{4}-1\right)} \\
& \left.\left.+\frac{2 x^{5}}{\left(x^{2}-1\right)\left(x^{3}-1\right)}+\frac{2 x^{6}}{\left(x^{2}-1\right)\left(x^{4}-1\right)}+\frac{x^{7}}{\left(x^{2}-1\right)\left(x^{5}-1\right)}+\frac{x^{5}}{x^{5}-1}\right)\right)
\end{aligned}
$$

Generate the series expansions of the g.f.'s.

Expressing the rational function with standard denominator gives an orders-ofmagnitude speedup in the series expansion.
Standard denominator $\left(1-x^{\wedge} p\right)^{\wedge}\{d+1\}$.
> pdenom: $=\left(1-x^{\wedge} \mathrm{p}\right)$:
standenom: =pdenom^ (d+1);

$$
\text { standenom: }=\left(1-x^{60}\right)^{6}
$$

G.f. as rational function with standard denominator.
$>$ Sgfstandnum:=simplify(numer (Sgf)*simplify(standenom/denom(Sgf))) :
Sgf:=Sgfstandnum/standenom;
Sgf $:=\frac{1}{\left(1-x^{60}\right)^{6}}\left(72 x^{10}\left(18 x^{9}+46 x^{8}+69 x^{7}+74 x^{6}+65 x^{5}+46 x^{4}+26 x^{3}\right.\right.$
$\left.+11 x^{2}+4 x+1\right)\left(x^{55}+x^{50}+x^{45}+x^{40}+x^{35}+x^{30}+x^{25}+x^{20}+x^{15}+x^{10}+x^{5}\right.$
+1) $\left(1+x+x^{2}+x^{3}+x^{5}+x^{4}+x^{6}+x^{7}+x^{8}+x^{10}+x^{15}+x^{12}+x^{9}+x^{13}\right.$
$+x^{11}+x^{19}+x^{14}+x^{16}+x^{17}+x^{18}+x^{58}+x^{54}+x^{56}+x^{52}+x^{50}+x^{48}+x^{46}+x^{44}$
$+x^{42}+x^{40}+x^{38}+x^{36}+x^{34}+x^{32}+x^{30}+x^{28}+x^{26}+x^{24}+x^{22}+x^{20}+x^{31}+x^{43}$
$+x^{55}+x^{37}+x^{49}+x^{25}+x^{59}+x^{57}+x^{53}+x^{51}+x^{47}+x^{45}+x^{41}+x^{39}+x^{35}+x^{33}$
$\left.+x^{29}+x^{27}+x^{23}+x^{21}\right)^{2}\left(1+x^{2}+x^{4}+x^{6}+x^{8}+x^{10}+x^{12}+x^{14}+x^{16}+x^{18}\right.$
$+x^{58}+x^{54}+x^{56}+x^{52}+x^{50}+x^{48}+x^{46}+x^{44}+x^{42}+x^{40}+x^{38}+x^{36}+x^{34}+x^{32}$
$\left.+x^{30}+x^{28}+x^{26}+x^{24}+x^{22}+x^{20}\right)\left(1-x+x^{3}-x^{5}+x^{6}+x^{15}+x^{12}-x^{13}-x^{17}\right.$
$+x^{18}+x^{54}+x^{48}+x^{42}+x^{36}+x^{30}+x^{24}-x^{37}-x^{49}-x^{25}-x^{53}+x^{51}-x^{41}+x^{39}$
$\left.-x^{29}+x^{27}\right)\left(1-x+x^{2}+x^{6}-x^{7}+x^{8}+x^{12}-x^{13}-x^{19}+x^{14}+x^{18}+x^{54}+x^{56}\right.$
$+x^{50}+x^{48}+x^{44}+x^{42}+x^{38}+x^{36}+x^{32}+x^{30}+x^{26}+x^{24}+x^{20}-x^{31}-x^{43}-x^{55}$
$\left.\left.-x^{37}-x^{49}-x^{25}\right)\right)$
G.f. as rational function with standard denominator.
$>$ Rgfstandnum:=simplify (numer (Rgf)*standenom/denom (Rgf)) :
Rgf:=Rgfstandnum/standenom;

$$
\begin{aligned}
\text { Rgf } & =\frac{1}{\left(1-x^{60}\right)^{6}}\left(7 2 \left(18 x^{9}+46 x^{8}+69 x^{7}+74 x^{6}+65 x^{5}+46 x^{4}+26 x^{3}+11 x^{2}\right.\right. \\
& +4 x+1) x^{8}\left(x^{57}+x^{54}+x^{51}+x^{48}+x^{45}+x^{42}+x^{39}+x^{36}+x^{33}+x^{30}+x^{27}\right. \\
& \left.+x^{24}+x^{21}+x^{18}+x^{15}+x^{12}+x^{9}+x^{6}+x^{3}+1\right)^{2}\left(-1+x-x^{2}+x^{3}+x^{5}-x^{4}\right. \\
& -x^{6}+x^{7}-x^{8}-x^{10}+x^{15}-x^{12}+x^{9}+x^{13}+x^{11}+x^{19}-x^{14}-x^{16}+x^{17}-x^{18} \\
& -x^{58}-x^{54}-x^{56}-x^{52}-x^{50}-x^{48}-x^{46}-x^{44}-x^{42}-x^{40}-x^{38}-x^{36}-x^{34}-x^{32} \\
& -x^{30}-x^{28}-x^{26}-x^{24}-x^{22}-x^{20}+x^{31}+x^{43}+x^{55}+x^{37}+x^{49}+x^{25}+x^{59}+x^{57}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+x^{53}+x^{51}+x^{47}+x^{45}+x^{41}+x^{39}+x^{35}+x^{33}+x^{29}+x^{27}+x^{23}+x^{21}\right)(-1 \\
& \left.+x^{60}\right)\left(1+x^{2}+x^{4}+x^{6}+x^{8}+x^{10}+x^{12}+x^{14}+x^{16}+x^{18}+x^{58}+x^{54}+x^{56}+x^{52}\right. \\
& +x^{50}+x^{48}+x^{46}+x^{44}+x^{42}+x^{40}+x^{38}+x^{36}+x^{34}+x^{32}+x^{30}+x^{28}+x^{26}+x^{24} \\
& \left.+x^{22}+x^{20}\right)\left(x^{52}-x^{51}+x^{48}-x^{46}+x^{44}-x^{41}+x^{40}+x^{32}-x^{31}+x^{28}-x^{26}+x^{24}\right. \\
& \left.\left.-x^{21}+x^{20}+x^{12}-x^{11}+x^{8}-x^{6}+x^{4}-x+1\right)\right)
\end{aligned}
$$

G.f. as rational function with standard denominator.
$>$ sgfstandnum:=simplify(numer (sgf)*simplify(standenom/denom(sgf))):
sgf:=sgfstandnum/standenom;
$s g f:=\frac{1}{\left(1-x^{60}\right)^{6}}\left(x^{10}\left(18 x^{9}+46 x^{8}+69 x^{7}+74 x^{6}+65 x^{5}+46 x^{4}+26 x^{3}+11 x^{2}\right.\right.$
$+4 x+1)\left(x^{55}+x^{50}+x^{45}+x^{40}+x^{35}+x^{30}+x^{25}+x^{20}+x^{15}+x^{10}+x^{5}\right.$
$+1)\left(1+x+x^{2}+x^{3}+x^{5}+x^{4}+x^{6}+x^{7}+x^{8}+x^{10}+x^{15}+x^{12}+x^{9}+x^{13}+x^{11}\right.$
$+x^{19}+x^{14}+x^{16}+x^{17}+x^{18}+x^{58}+x^{54}+x^{56}+x^{52}+x^{50}+x^{48}+x^{46}+x^{44}+x^{42}$
$+x^{40}+x^{38}+x^{36}+x^{34}+x^{32}+x^{30}+x^{28}+x^{26}+x^{24}+x^{22}+x^{20}+x^{31}+x^{43}+x^{55}$
$+x^{37}+x^{49}+x^{25}+x^{59}+x^{57}+x^{53}+x^{51}+x^{47}+x^{45}+x^{41}+x^{39}+x^{35}+x^{33}+x^{29}$
$\left.+x^{27}+x^{23}+x^{21}\right)^{2}\left(1+x^{2}+x^{4}+x^{6}+x^{8}+x^{10}+x^{12}+x^{14}+x^{16}+x^{18}+x^{58}\right.$
$+x^{54}+x^{56}+x^{52}+x^{50}+x^{48}+x^{46}+x^{44}+x^{42}+x^{40}+x^{38}+x^{36}+x^{34}+x^{32}+x^{30}$
$\left.+x^{28}+x^{26}+x^{24}+x^{22}+x^{20}\right)\left(1-x+x^{3}-x^{5}+x^{6}+x^{15}+x^{12}-x^{13}-x^{17}+x^{18}\right.$
$+x^{54}+x^{48}+x^{42}+x^{36}+x^{30}+x^{24}-x^{37}-x^{49}-x^{25}-x^{53}+x^{51}-x^{41}+x^{39}-x^{29}$
$\left.+x^{27}\right)\left(1-x+x^{2}+x^{6}-x^{7}+x^{8}+x^{12}-x^{13}-x^{19}+x^{14}+x^{18}+x^{54}+x^{56}+x^{50}\right.$
$+x^{48}+x^{44}+x^{42}+x^{38}+x^{36}+x^{32}+x^{30}+x^{26}+x^{24}+x^{20}-x^{31}-x^{43}-x^{55}-x^{37}$
$\left.\left.-x^{49}-x^{25}\right)\right)$
G.f. as rational function with standard denominator.
> rgfstandnum:=simplify(numer (rgf)*standenom/denom(rgf)):
rgf:=rgfstandnum/standenom;
$r g f:=\frac{1}{\left(1-x^{60}\right)^{6}}\left(\left(18 x^{9}+46 x^{8}+69 x^{7}+74 x^{6}+65 x^{5}+46 x^{4}+26 x^{3}+11 x^{2}\right.\right.$
$+4 x+1) x^{8}\left(x^{57}+x^{54}+x^{51}+x^{48}+x^{45}+x^{42}+x^{39}+x^{36}+x^{33}+x^{30}+x^{27}\right.$
$\left.+x^{24}+x^{21}+x^{18}+x^{15}+x^{12}+x^{9}+x^{6}+x^{3}+1\right)^{2}\left(-1+x-x^{2}+x^{3}+x^{5}-x^{4}\right.$
$-x^{6}+x^{7}-x^{8}-x^{10}+x^{15}-x^{12}+x^{9}+x^{13}+x^{11}+x^{19}-x^{14}-x^{16}+x^{17}-x^{18}$
$-x^{58}-x^{54}-x^{56}-x^{52}-x^{50}-x^{48}-x^{46}-x^{44}-x^{42}-x^{40}-x^{38}-x^{36}-x^{34}-x^{32}$

$$
\begin{aligned}
& -x^{30}-x^{28}-x^{26}-x^{24}-x^{22}-x^{20}+x^{31}+x^{43}+x^{55}+x^{37}+x^{49}+x^{25}+x^{59}+x^{57} \\
& \left.+x^{53}+x^{51}+x^{47}+x^{45}+x^{41}+x^{39}+x^{35}+x^{33}+x^{29}+x^{27}+x^{23}+x^{21}\right)(-1 \\
& \left.+x^{60}\right)\left(1+x^{2}+x^{4}+x^{6}+x^{8}+x^{10}+x^{12}+x^{14}+x^{16}+x^{18}+x^{58}+x^{54}+x^{56}+x^{52}\right. \\
& +x^{50}+x^{48}+x^{46}+x^{44}+x^{42}+x^{40}+x^{38}+x^{36}+x^{34}+x^{32}+x^{30}+x^{28}+x^{26}+x^{24} \\
& \left.+x^{22}+x^{20}\right)\left(x^{52}-x^{51}+x^{48}-x^{46}+x^{44}-x^{41}+x^{40}+x^{32}-x^{31}+x^{28}-x^{26}+x^{24}\right. \\
& \left.\left.-x^{21}+x^{20}+x^{12}-x^{11}+x^{8}-x^{6}+x^{4}-x+1\right)\right)
\end{aligned}
$$

Expand the series to find the first few values of the number of squares.

> > Sseries:=series (Sgf, x=0, enddegree+1) ;

Sseries: $=72 x^{10}+288 x^{11}+936 x^{12}+2592 x^{13}+5760 x^{14}+11520 x^{15}$

$$
+20952 x^{16}+35712 x^{17}+57168 x^{18}+88272 x^{19}+131112 x^{20}+\mathrm{O}\left(x^{21}\right)
$$

Expand the series to find the first few values of the number of reduced squares.
> Rseries: =series (Rgf, $x=0$, enddegree +1);
Rseries: $=72 x^{8}+144 x^{9}+432 x^{10}+1008 x^{11}+1512 x^{12}+2592 x^{13}+3672 x^{14}$

$$
\begin{aligned}
& +5328 x^{15}+6696 x^{16}+9648 x^{17}+11736 x^{18}+15552 x^{19}+17856 x^{20} \\
& +O\left(x^{21}\right)
\end{aligned}
$$

Expand the series to find the first few values of the number of symmetry types.
> sseries:=series(sgf, $x=0$, enddegree +1);
sseries: $=x^{10}+4 x^{11}+13 x^{12}+36 x^{13}+80 x^{14}+160 x^{15}+291 x^{16}+496 x^{17}$

$$
+794 x^{18}+1226 x^{19}+1821 x^{20}+\mathrm{O}\left(x^{21}\right)
$$

Expand the series to find the first few values of the number of reduced symmetry types.
> rseries:=series(rgf, $x=0$, enddegree +1);
rseries: $=x^{8}+2 x^{9}+6 x^{10}+14 x^{11}+21 x^{12}+36 x^{13}+51 x^{14}+74 x^{15}+93 x^{16}$

$$
+134 x^{17}+163 x^{18}+216 x^{19}+248 x^{20}+\mathrm{O}\left(x^{21}\right)
$$

Find the constituents

Casculate the zeroth constituent of the total semimagic counting function. Find its constant term.
> Szeroth:=expand (
sum (coeff(Sgfstandnum, \mathbf{x}, p *jj) *binomial (d+t/p-jj,d),jj=0..d+1)) ; print (subs (t=0,Szeroth)) :

Szeroth: $=-1296+1464 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}$

Extract the constituents of the total semimagic counting function.
> Sconstituent [0]:=Szeroth:
for r from 1 to p do
Sconstituent [r]:=expand(sum(coeff(Sgfstandnum, x,p*jj+r)* binomial (d+(t-r)/p-jj,d), jj=0..d)):
\# print(r):
\# print(Sconstituent[r]):
print(factor (Sconstituent[r])):
od;
Sconstituent $_{1}:=\frac{2831}{2} t-\frac{11933}{20} t^{2}-\frac{110413}{120}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}$

$$
\frac{1}{120}(t-1)\left(36 t^{4}-1089 t^{3}+12151 t^{2}-59447 t+110413\right)
$$

Sconstituent ${ }_{2}:=1464 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{3824}{3}$

$$
\frac{1}{120}(t-2)\left(36 t^{4}-1053 t^{3}+11134 t^{2}-49600 t+76480\right)
$$

Sconstituent $_{3}:=\frac{2847}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{47727}{40}$

$$
\frac{1}{120}(t-3)\left(36 t^{4}-1017 t^{3}+10189 t^{2}-41031 t+47727\right)
$$

Sconstituent $_{4}:=1456 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{18152}{15}$

$$
\frac{1}{120}(t-4)\left(36 t^{4}-981 t^{3}+9316 t^{2}-34604 t+36304\right)
$$

Sconstituent $t_{5}:=\frac{2847}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{25705}{24}$

$$
\frac{1}{120}(t-5)\left(36 t^{4}-945 t^{3}+8515 t^{2}-29023 t+25705\right)
$$

Sconstituent ${ }_{6}:=1464 t-\frac{6192}{5}-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}$

$$
\frac{1}{120}(t-6)\left(36 t^{4}-909 t^{3}+7786 t^{2}-25152 t+24768\right)
$$

Sconstituent $_{7}:=\frac{2831}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{25193}{24}$

$$
\frac{1}{120}(t-7)\left(36 t^{4}-873 t^{3}+7129 t^{2}-21695 t+17995\right)
$$

Sconstituent $:=1464 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{19552}{15}$

$$
\begin{aligned}
& \frac{1}{120}(t-8)\left(36 t^{4}-837 t^{3}+6544 t^{2}-19516 t+19552\right) \\
& \text { Sconstituent }_{9}:=\frac{2847}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}-\frac{44847}{40}+\frac{3}{10} t^{5} \\
& \frac{1}{120}(t-9)\left(36 t^{4}-801 t^{3}+6031 t^{2}-17319 t+14949\right) \\
& \text { Sconstituent }_{10}:=1456 t-\frac{5989}{10} t^{2}-\frac{3544}{3}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5} \\
& 1456 t-\frac{5989}{10} t^{2}-\frac{3544}{3}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}
\end{aligned}
$$

Sconstituent $t_{11}:=\frac{2847}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{130253}{120}$ $\frac{2847}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{130253}{120}$

Sconstituent $_{12}:=-1296+1464 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}$

$$
-1296+1464 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}
$$

$$
\begin{gathered}
\text { Sconstituent }_{13}:=\frac{2831}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{120781}{120} \\
\frac{2831}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{120781}{120}
\end{gathered}
$$

$$
\text { Sconstituent }_{14}:=1464 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{19552}{15}
$$

$$
\frac{1}{120}(t-8)\left(36 t^{4}-837 t^{3}+6544 t^{2}-19516 t+19552\right)
$$

$$
\text { Sconstituent }{ }_{15}:=\frac{2847}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{9315}{8}
$$

$$
\frac{2847}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{9315}{8}
$$

Sconstituent ${ }_{16}:=1456 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{16856}{15}$

$$
1456 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{16856}{15}
$$

Sconstituent ${ }_{17}:=\frac{2847}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{25705}{24}$

$$
\begin{gathered}
\frac{1}{120}(t-5)\left(36 t^{4}-945 t^{3}+8515 t^{2}-29023 t+25705\right) \\
\text { Sconstituent }_{18}:=1464 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{6624}{5} \\
1464 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{6624}{5}
\end{gathered}
$$

$$
\text { Sconstituent }_{19}:=-\frac{129421}{120}+\frac{2831}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}
$$

$$
-\frac{129421}{120}+\frac{2831}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}
$$

$$
\text { Sconstituent }{ }_{20}:=1464 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{3824}{3}
$$

$$
\frac{1}{120}(t-2)\left(36 t^{4}-1053 t^{3}+11134 t^{2}-49600 t+76480\right)
$$

$$
\text { Sconstituent }{ }_{21}:=\frac{2847}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{41391}{40}
$$

$$
\frac{2847}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{41391}{40}
$$

$$
\text { Sconstituent }_{22}:=1456 t-\frac{5989}{10} t^{2}-\frac{3544}{3}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}
$$

$$
1456 t-\frac{5989}{10} t^{2}-\frac{3544}{3}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}
$$

Sconstituent $t_{23}:=\frac{2847}{2} t-\frac{140621}{120}-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}$

$$
\frac{2847}{2} t-\frac{140621}{120}-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}
$$

Sconstituent ${ }_{24}:=1464 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{6624}{5}$

$$
1464 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{6624}{5}
$$

Sconstituent ${ }_{25}:=\frac{2831}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{23465}{24}$

$$
\frac{2831}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{23465}{24}
$$

Sconstituent ${ }_{26}:=-\frac{18256}{15}+1464 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}$

$$
\begin{gathered}
-\frac{18256}{15}+1464 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5} \\
\text { Sconstituent } t_{27}:=\frac{2847}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{9315}{8} \\
\frac{2847}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{9315}{8}
\end{gathered}
$$

$$
\text { Sconstituent }_{28}:=1456 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{18152}{15}
$$

$$
\frac{1}{120}(t-4)\left(36 t^{4}-981 t^{3}+9316 t^{2}-34604 t+36304\right)
$$

$$
\text { Sconstituent }{ }_{29}:=\frac{2847}{2} t-\frac{131981}{120}-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}
$$

$$
\frac{2847}{2} t-\frac{131981}{120}-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}
$$

$$
\text { Sconstituent }_{30}:=-1296+1464 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}
$$

$$
-1296+1464 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}
$$

$$
\begin{gathered}
\text { Sconstituent }_{31}:=\frac{2831}{2} t-\frac{119053}{120}-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5} \\
\frac{2831}{2} t-\frac{119053}{120}-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}
\end{gathered}
$$

$$
\text { Sconstituent }_{32}:=1464 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{3824}{3}
$$

$$
\frac{1}{120}(t-2)\left(36 t^{4}-1053 t^{3}+11134 t^{2}-49600 t+76480\right)
$$

$$
\text { Sconstituent }_{33}:=\frac{2847}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}-\frac{44847}{40}+\frac{3}{10} t^{5}
$$

$$
\frac{1}{120}(t-9)\left(36 t^{4}-801 t^{3}+6031 t^{2}-17319 t+14949\right)
$$

$$
\text { Sconstituent }_{34}:=1456 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{18152}{15}
$$

$$
\frac{1}{120}(t-4)\left(36 t^{4}-981 t^{3}+9316 t^{2}-34604 t+36304\right)
$$

Sconstituent ${ }_{35}:=\frac{2847}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{27433}{24}$

$$
\begin{gathered}
\frac{2847}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{27433}{24} \\
\text { Sconstituent }_{36}:=1464 t-\frac{6192}{5}-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5} \\
\frac{1}{120}(t-6)\left(36 t^{4}-909 t^{3}+7786 t^{2}-25152 t+24768\right) \\
\text { Sconstituent }_{37}:=\frac{2831}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{23465}{24} \\
\frac{2831}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{23465}{24}
\end{gathered}
$$

$$
\text { Sconstituent }_{38}:=1464 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{19552}{15}
$$

$$
\frac{1}{120}(t-8)\left(36 t^{4}-837 t^{3}+6544 t^{2}-19516 t+19552\right)
$$

$$
\text { Sconstituent }{ }_{39}:=\frac{2847}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{47727}{40}
$$

$$
\frac{1}{120}(t-3)\left(36 t^{4}-1017 t^{3}+10189 t^{2}-41031 t+47727\right)
$$

$$
\text { Sconstituent }_{40}:=1456 t-\frac{5989}{10} t^{2}-\frac{3544}{3}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}
$$

$$
1456 t-\frac{5989}{10} t^{2}-\frac{3544}{3}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}
$$

Sconstituent $_{41}:=\frac{2847}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{121613}{120}$ $\frac{2847}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{121613}{120}$

Sconstituent $_{42}:=-1296+1464 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}$

$$
-1296+1464 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}
$$

Sconstituent $_{43}:=-\frac{129421}{120}+\frac{2831}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}$

$$
-\frac{129421}{120}+\frac{2831}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}
$$

Sconstituent $_{44}:=1464 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{19552}{15}$

$$
\begin{gathered}
\frac{1}{120}(t-8)\left(36 t^{4}-837 t^{3}+6544 t^{2}-19516 t+19552\right) \\
\text { Sconstituent }_{45}:=\frac{2847}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{8739}{8} \\
\frac{2847}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{8739}{8}
\end{gathered}
$$

$$
\text { Sconstituent }_{46}:=1456 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{16856}{15}
$$

$$
1456 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{16856}{15}
$$

$$
\text { Sconstituent }_{47}:=\frac{2847}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{27433}{24}
$$

$$
\frac{2847}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{27433}{24}
$$

Sconstituent $_{48}:=1464 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{6624}{5}$

$$
1464 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{6624}{5}
$$

$$
\begin{gathered}
\text { Sconstituent }_{49}:=\frac{2831}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{120781}{120} \\
\frac{2831}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{120781}{120}
\end{gathered}
$$

$$
\text { Sconstituent }_{50}:=1464 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{3824}{3}
$$

$$
\frac{1}{120}(t-2)\left(36 t^{4}-1053 t^{3}+11134 t^{2}-49600 t+76480\right)
$$

$$
\text { Sconstituent }_{51}:=\frac{2847}{2} t-\frac{44271}{40}-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}
$$

$$
\frac{2847}{2} t-\frac{44271}{40}-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}
$$

$$
\text { Sconstituent }_{52}:=1456 t-\frac{5989}{10} t^{2}-\frac{3544}{3}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}
$$

$$
1456 t-\frac{5989}{10} t^{2}-\frac{3544}{3}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}
$$

Sconstituent $_{53}:=\frac{2847}{2} t-\frac{131981}{120}-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}$

$$
\frac{2847}{2} t-\frac{131981}{120}-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}
$$

$$
\text { Sconstituent }_{54}:=1464 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{6624}{5}
$$

$$
1464 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{6624}{5}
$$

$$
\text { Sconstituent }_{55}:=\frac{2831}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{25193}{24}
$$

$$
\frac{1}{120}(t-7)\left(36 t^{4}-873 t^{3}+7129 t^{2}-21695 t+17995\right)
$$

$$
\text { Sconstituent }_{56}:=-\frac{18256}{15}+1464 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}
$$

$$
-\frac{18256}{15}+1464 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}
$$

$$
\text { Sconstituent }{ }_{57}:=\frac{2847}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{8739}{8}
$$

$$
\frac{2847}{2} t-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{8739}{8}
$$

$$
\text { Sconstituent }_{58}:=1456 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}-\frac{18152}{15}
$$

$$
\frac{1}{120}(t-4)\left(36 t^{4}-981 t^{3}+9316 t^{2}-34604 t+36304\right)
$$

Sconstituent ${ }_{59}:=\frac{2847}{2} t-\frac{140621}{120}-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}$

$$
\frac{2847}{2} t-\frac{140621}{120}-\frac{11933}{20} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}
$$

Sconstituent ${ }_{60}:=-1296+1464 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}$

$$
-1296+1464 t-\frac{5989}{10} t^{2}+\frac{331}{3} t^{3}-\frac{75}{8} t^{4}+\frac{3}{10} t^{5}
$$

Extract the coefficients of the constituents.
$>$ for r from 1 to p do
for coeffdeg from 0 to d do Sc[coeffdeg, r]:=coeff(Sconstituent [r], t, coeffdeg) : \#print (r, Sc[coeffdeg, r]):
od:
od:
Print and analyze the constituent coefficients for periods. First the higher
coefficients, which ought to be constant. Print the first coefficient, then any that
don't repeat the preceding value.
$>$ for coeffdeg from 3 to d do
print("degree", coeffdeg, "coeff", Sc[coeffdeg,1]):
print(1,Sc[coeffdeg,1]);
for r from 2 to p do
stepdifference:=Sc[coeffdeg,r]-Sc[coeffdeg,r-1]:
if(stepdifference<>0) then
print (r,Sc[coeffdeg,r],stepdifference):
fi:
od:
print("Compared all coefficients of degree", coeffdeg); od:

$$
\begin{gathered}
\text { "degree", 3, "coeff", } \frac{331}{3} \\
1, \frac{331}{3}
\end{gathered}
$$

"Compared all coefficients of degree", 3

$$
\begin{gathered}
\text { "degree", 4, "coeff", }-\frac{75}{8} \\
1,-\frac{75}{8}
\end{gathered}
$$

"Compared all coefficients of degree", 4

$$
\begin{gathered}
\text { "degree", } 5, \text { "coeff", } \frac{3}{10} \\
1, \frac{3}{10}
\end{gathered}
$$

"Compared all coefficients of degree", 5
Next, the constant terms, whose period is expected to be p. Print all constant terms up to the presumed period "stepsize". Print the difference (at step "stepsize") if they are not repeating.
Note that the even terms repeat at step 30 (a period of 15 , half the expected period).
> stepsize:=30;
for r from 1 to stepsize do
print(r, Sc[0,r]);
od:
for r from stepsize+1 to p do
stepdifference: =Sc[0,r]-Sc[0,r-stepsize]:
if (stepdifference<>0) then print($x, S c[0, r]$,stepdifference):
fi:
\#print (r,Sc[0,r],stepdifference);
od:
print("Constant terms completed.");

$$
\begin{aligned}
& \text { stepsize :=30 } \\
& 1,-\frac{110413}{120} \\
& 2,-\frac{3824}{3} \\
& 3,-\frac{47727}{40} \\
& 4,-\frac{18152}{15} \\
& 5,-\frac{25705}{24} \\
& 6,-\frac{6192}{5} \\
& 7,-\frac{25193}{24} \\
& 8,-\frac{19552}{15} \\
& 9,-\frac{44847}{40} \\
& 18,-\frac{6624}{5} \\
& 10,-\frac{3544}{3} \\
& 16,-\frac{16856}{15} \\
& 14,-\frac{130253}{120} \\
& 12,-\frac{195705}{15} \\
& 15,-\frac{9315}{8} \\
& 120781 \\
& 120 \\
& 14 \\
& 15
\end{aligned}
$$

$$
\begin{aligned}
& 19,-\frac{129421}{120} \\
& \text { 20, }-\frac{3824}{3} \\
& \text { 21, }-\frac{41391}{40} \\
& \text { 22, }-\frac{3544}{3} \\
& \text { 23, }-\frac{140621}{120} \\
& \text { 24, }-\frac{6624}{5} \\
& 25,-\frac{23465}{24} \\
& \text { 26, }-\frac{18256}{15} \\
& \text { 27, }-\frac{9315}{8} \\
& 28,-\frac{18152}{15} \\
& \text { 29, }-\frac{131981}{120} \\
& \text { 30, - } 1296 \\
& \text { 31, }-\frac{119053}{120},-72 \\
& \text { 33, }-\frac{44847}{40}, 72 \\
& 35,-\frac{27433}{24},-72 \\
& \text { 37, }-\frac{23465}{24}, 72 \\
& 39,-\frac{47727}{40},-72 \\
& 41,-\frac{121613}{120}, 72 \\
& 43,-\frac{129421}{120},-72
\end{aligned}
$$

$$
\begin{aligned}
& 45,-\frac{8739}{8}, 72 \\
& 47,-\frac{27433}{24},-72 \\
& 49,-\frac{120781}{120}, 72 \\
& 51,-\frac{44271}{40},-72 \\
& 53,-\frac{131981}{120}, 72 \\
& 55,-\frac{25193}{24},-72 \\
& 57,-\frac{8739}{8}, 72 \\
& 59,-\frac{140621}{120},-72
\end{aligned}
$$

"Constant terms completed."
Now, the linear terms. First print all linear coefficients up to the presumed period "stepsize".. Then analyze for period and print the difference (at step "stepsize") if they are not repeating.
> stepsize:=6;
for r from 1 to stepsize do print($r, \operatorname{Sc}[1, r]$);
od:
for r from stepsize+1 to p do stepdifference:=Sc[1,r]-Sc[1,r-stepsize]: if(stepdifference<>0) then print($r, \operatorname{Sc}[1, r]$,stepdifference):
fi:
od:
print("Linear coefficients completed."); stepsize:= 6
1, $\frac{2831}{2}$
2, 1464
3, $\frac{2847}{2}$
4, 1456
5, $\frac{2847}{2}$

6, 1464

"Linear coefficients completed."
The quadratic terms. First print all quadratic coefficients up to the presumed period "stepsize".. Then analyze for period and print the difference (at step "stepsize") if they are not repeating.
$>$ stepsize:=2;
for r from 1 to stepsize do
print(r, Sc[2,r]);
od:
for r from stepsizet1 to p do stepdifference: =Sc[2,r]-Sc[2,r-stepsize]:

```
        if( stepdifference<>0 ) then print(r,Sc[2,r],stepdifference):
```

 fi:
 od:
print("Quadratic coefficients completed.");
stepsize:=2
1, $-\frac{11933}{20}$
2, $-\frac{5989}{10}$
"Quadratic coefficients completed."
Casculate the zeroth constituent of the semimagic symmetry-type counting
function. Find its constant term.
> szeroth:=expand (
sum (coeff(sgfstandnum, \mathbf{x}, p *ji) *binomial (d+t/p-jj, d),jj=0..d+1)) ;
print(subs (t=0, szeroth)):

$$
\text { szeroth }:=-18+\frac{61}{3} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}
$$

- 18

Extract the constituents of the semimagic symmetry-type counting function.
> sconstituent [0]:=szeroth:
for r from 1 to p do
sconstituent[r]:=expand (sum (coeff(sgfstandnum, $x, p * j j+r)$ *
binomial (d+(t-r)/p-jj,d), jj=0..d)):
\# print(r):
\# print(sconstituent[r]):
print(factor(sconstituent[r])):
od;
sconstituent $t_{1}:=\frac{2831}{144} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{110413}{8640}$

$$
\frac{1}{8640}(t-1)\left(36 t^{4}-1089 t^{3}+12151 t^{2}-59447 t+110413\right)
$$

$$
\begin{aligned}
& \text { sconstituent }_{2}:=\frac{61}{3} t-\frac{5989}{720} t^{2}-\frac{478}{27}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5} \\
& \frac{1}{8640}(t-2)\left(36 t^{4}-1053 t^{3}+11134 t^{2}-49600 t+76480\right) \\
& \text { sconstituent }_{3}:=\frac{949}{48} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{5303}{320} \\
& \frac{1}{8640}(t-3)\left(36 t^{4}-1017 t^{3}+10189 t^{2}-41031 t+47727\right) \\
& \text { sconstituent }_{4}:=\frac{182}{9} t-\frac{2269}{135}-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5} \\
& \frac{1}{8640}(t-4)\left(36 t^{4}-981 t^{3}+9316 t^{2}-34604 t+36304\right) \\
& \text { sconstituent }_{5}:=\frac{949}{48} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{25705}{1728} \\
& \frac{1}{8640}(t-5)\left(36 t^{4}-945 t^{3}+8515 t^{2}-29023 t+25705\right) \\
& \text { sconstituent }_{6}:=\frac{61}{3} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{86}{5} \\
& \frac{1}{8640}(t-6)\left(36 t^{4}-909 t^{3}+7786 t^{2}-25152 t+24768\right) \\
& \text { sconstituent }_{7}:=\frac{2831}{144} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{25193}{1728} \\
& \frac{1}{8640}(t-7)\left(36 t^{4}-873 t^{3}+7129 t^{2}-21695 t+17995\right) \\
& \text { sconstituent }{ }_{8}:=\frac{61}{3} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{2444}{135} \\
& \frac{1}{8640}(t-8)\left(36 t^{4}-837 t^{3}+6544 t^{2}-19516 t+19552\right) \\
& \text { sconstituent }_{9}:=\frac{949}{48} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{4983}{320} \\
& \frac{1}{8640}(t-9)\left(36 t^{4}-801 t^{3}+6031 t^{2}-17319 t+14949\right) \\
& \text { sconstituent }{ }_{10}:=\frac{182}{9} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{443}{27} \\
& \frac{182}{9} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{443}{27}
\end{aligned}
$$

$$
\begin{aligned}
& \text { sconstituent }_{11}:=\frac{949}{48} t-\frac{130253}{8640}-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5} \\
& \frac{949}{48} t-\frac{130253}{8640}-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5} \\
& \text { sconstituent }_{12}:=-18+\frac{61}{3} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5} \\
& -18+\frac{61}{3} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}
\end{aligned}
$$

$$
\begin{gathered}
\text { sconstituent }_{13}:=\frac{2831}{144} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{120781}{8640} \\
\frac{2831}{144} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{120781}{8640}
\end{gathered}
$$

$$
\text { sconstituent }_{14}:=\frac{61}{3} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{2444}{135}
$$

$$
\frac{1}{8640}(t-8)\left(36 t^{4}-837 t^{3}+6544 t^{2}-19516 t+19552\right)
$$

$$
\text { sconstituent }_{15}:=\frac{949}{48} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{1035}{64}
$$

$$
\frac{949}{48} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{1035}{64}
$$

$$
\text { sconstituent }{ }_{16}:=\frac{182}{9} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{2107}{135}
$$

$$
\frac{182}{9} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{2107}{135}
$$

$$
\text { sconstituent }{ }_{17}:=\frac{949}{48} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{25705}{1728}
$$

$$
\frac{1}{8640}(t-5)\left(36 t^{4}-945 t^{3}+8515 t^{2}-29023 t+25705\right)
$$

$$
\text { sconstituent }_{18}:=\frac{61}{3} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{92}{5}
$$

$$
\frac{61}{3} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{92}{5}
$$

sconstituent ${ }_{19}:=\frac{2831}{144} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{129421}{8640}$

$$
\frac{2831}{144} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{129421}{8640}
$$

$$
\begin{aligned}
& \text { sconstituent }{ }_{20}:=\frac{61}{3} t-\frac{5989}{720} t^{2}-\frac{478}{27}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5} \\
& \frac{1}{8640}(t-2)\left(36 t^{4}-1053 t^{3}+11134 t^{2}-49600 t+76480\right) \\
& \text { sconstituent }{ }_{21}:=\frac{949}{48} t-\frac{4599}{320}-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5} \\
& \frac{949}{48} t-\frac{4599}{320}-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5} \\
& \text { sconstituent }{ }_{22}:=\frac{182}{9} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{443}{27} \\
& \frac{182}{9} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{443}{27} \\
& \text { sconstituent }{ }_{23}:=-\frac{140621}{8640}+\frac{949}{48} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5} \\
& -\frac{140621}{8640}+\frac{949}{48} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5} \\
& \text { sconstituent }{ }_{24}:=\frac{61}{3} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{92}{5} \\
& \frac{61}{3} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{92}{5} \\
& \text { sconstituent }{ }_{25}:=\frac{2831}{144} t-\frac{23465}{1728}-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5} \\
& \frac{2831}{144} t-\frac{23465}{1728}-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5} \\
& \text { sconstituent }{ }_{26}:=\frac{61}{3} t-\frac{5989}{720} t^{2}-\frac{2282}{135}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5} \\
& \frac{61}{3} t-\frac{5989}{720} t^{2}-\frac{2282}{135}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5} \\
& \text { sconstituent }{ }_{27}:=\frac{949}{48} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{1035}{64} \\
& \frac{949}{48} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{1035}{64} \\
& \text { sconstituent }{ }_{28}:=\frac{182}{9} t-\frac{2269}{135}-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5} \\
& \frac{1}{8640}(t-4)\left(36 t^{4}-981 t^{3}+9316 t^{2}-34604 t+36304\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { sconstituent }_{29}:=\frac{949}{48} t-\frac{131981}{8640}-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5} \\
& \frac{949}{48} t-\frac{131981}{8640}-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5} \\
& \text { sconstituent }_{30}:=-18+\frac{61}{3} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5} \\
& -18+\frac{61}{3} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}
\end{aligned}
$$

$$
\begin{gathered}
\text { sconstituent }_{31}:=\frac{2831}{144} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{119053}{8640} \\
\frac{2831}{144} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{119053}{8640}
\end{gathered}
$$

$$
\text { sconstituent }_{32}:=\frac{61}{3} t-\frac{5989}{720} t^{2}-\frac{478}{27}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}
$$

$$
\frac{1}{8640}(t-2)\left(36 t^{4}-1053 t^{3}+11134 t^{2}-49600 t+76480\right)
$$

$$
\text { sconstituent }_{33}:=\frac{949}{48} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{4983}{320}
$$

$$
\frac{1}{8640}(t-9)\left(36 t^{4}-801 t^{3}+6031 t^{2}-17319 t+14949\right)
$$

$$
\text { sconstituent }{ }_{34}:=\frac{182}{9} t-\frac{2269}{135}-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}
$$

$$
\frac{1}{8640}(t-4)\left(36 t^{4}-981 t^{3}+9316 t^{2}-34604 t+36304\right)
$$

$$
\text { sconstituent }{ }_{35}:=\frac{949}{48} t-\frac{27433}{1728}-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}
$$

$$
\frac{949}{48} t-\frac{27433}{1728}-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}
$$

$$
\text { sconstituent }_{36}:=\frac{61}{3} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{86}{5}
$$

$$
\frac{1}{8640}(t-6)\left(36 t^{4}-909 t^{3}+7786 t^{2}-25152 t+24768\right)
$$

$$
\text { sconstituent }_{37}:=\frac{2831}{144} t-\frac{23465}{1728}-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}
$$

$$
\frac{2831}{144} t-\frac{23465}{1728}-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}
$$

$$
\begin{aligned}
& \text { sconstituent }{ }_{38}:=\frac{61}{3} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{2444}{135} \\
& \frac{1}{8640}(t-8)\left(36 t^{4}-837 t^{3}+6544 t^{2}-19516 t+19552\right) \\
& \text { sconstituent }{ }_{39}:=\frac{949}{48} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{5303}{320} \\
& \frac{1}{8640}(t-3)\left(36 t^{4}-1017 t^{3}+10189 t^{2}-41031 t+47727\right) \\
& \text { sconstituent }_{40}:=\frac{182}{9} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{443}{27} \\
& \frac{182}{9} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{443}{27} \\
& \text { sconstituent }_{41}:=\frac{949}{48} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{121613}{8640} \\
& \frac{949}{48} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{121613}{8640} \\
& \text { sconstituent }_{42}:=-18+\frac{61}{3} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5} \\
& -18+\frac{61}{3} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5} \\
& \text { sconstituent }_{43}:=\frac{2831}{144} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{129421}{8640} \\
& \frac{2831}{144} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{129421}{8640} \\
& \text { sconstituent }_{44}:=\frac{61}{3} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{2444}{135} \\
& \frac{1}{8640}(t-8)\left(36 t^{4}-837 t^{3}+6544 t^{2}-19516 t+19552\right) \\
& \text { sconstituent }{ }_{45}:=\frac{949}{48} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{971}{64} \\
& \frac{949}{48} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{971}{64} \\
& \text { sconstituent }{ }_{46}:=\frac{182}{9} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{2107}{135} \\
& \frac{182}{9} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{2107}{135}
\end{aligned}
$$

$$
\begin{aligned}
& \text { sconstituent }_{47}:=\frac{949}{48} t-\frac{27433}{1728}-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5} \\
& \frac{949}{48} t-\frac{27433}{1728}-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5} \\
& \text { sconstituent }_{48}:=\frac{61}{3} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{92}{5} \\
& \frac{61}{3} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{92}{5}
\end{aligned}
$$

$$
\text { sconstituent }_{49}:=\frac{2831}{144} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{120781}{8640}
$$

$$
\frac{2831}{144} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{120781}{8640}
$$

$$
\text { sconstituent }_{50}:=\frac{61}{3} t-\frac{5989}{720} t^{2}-\frac{478}{27}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}
$$

$$
\frac{1}{8640}(t-2)\left(36 t^{4}-1053 t^{3}+11134 t^{2}-49600 t+76480\right)
$$

$$
\text { sconstituent }_{51}:=\frac{949}{48} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{4919}{320}
$$

$$
\frac{949}{48} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{4919}{320}
$$

$$
\text { sconstituent }_{52}:=\frac{182}{9} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{443}{27}
$$

$$
\frac{182}{9} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{443}{27}
$$

$$
\text { sconstituent }_{53}:=\frac{949}{48} t-\frac{131981}{8640}-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}
$$

$$
\frac{949}{48} t-\frac{131981}{8640}-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}
$$

$$
\text { sconstituent }_{54}:=\frac{61}{3} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{92}{5}
$$

$$
\frac{61}{3} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{92}{5}
$$

$$
\text { sconstituent }_{55}:=\frac{2831}{144} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{25193}{1728}
$$

$$
\frac{1}{8640}(t-7)\left(36 t^{4}-873 t^{3}+7129 t^{2}-21695 t+17995\right)
$$

$$
\begin{aligned}
& \text { sconstituent }_{56}:=\frac{61}{3} t-\frac{5989}{720} t^{2}-\frac{2282}{135}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5} \\
& \frac{61}{3} t-\frac{5989}{720} t^{2}-\frac{2282}{135}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5} \\
& \text { sconstituent }_{57}:=\frac{949}{48} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{971}{64} \\
& \frac{949}{48} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}-\frac{971}{64} \\
& \text { sconstituent }_{58}:=\frac{182}{9} t-\frac{2269}{135}-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5} \\
& \frac{1}{8640}(t-4)\left(36 t^{4}-981 t^{3}+9316 t^{2}-34604 t+36304\right)
\end{aligned}{\text { sconstituent }{ }_{59}:=-\frac{140621}{8640}+\frac{949}{48} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}}_{-\frac{140621}{8640}+\frac{949}{48} t-\frac{11933}{1440} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}}^{\text {sconstituent } t_{60}:=-18+\frac{61}{3} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}} \begin{aligned}
& -18+\frac{61}{3} t-\frac{5989}{720} t^{2}+\frac{331}{216} t^{3}-\frac{25}{192} t^{4}+\frac{1}{240} t^{5}
\end{aligned}
$$

Extract the coefficients of the constituents.
$>$ for r from 1 to p do
for coeffdeg from 0 to d do sc[coeffdeg, r]:=coeff(sconstituent [r],t,coeffdeg): \#print (r, sc[coeffdeg,r]):
od:
od:
Print and analyze the constituent coefficients for periods. First the higher coefficients, which are constant. Print the first coefficient, then any that don't repeat the preceding value (there are none).
$>$ for coeffdeg from 3 to d do
print("degree", coeffdeg, "coeff", sc[coeffdeg,1]):
for r from 2 to p do
stepdifference:=sc[coeffdeg,r]-sc[coeffdeg,r-1]:
if(stepdifference<>0) then
print (r,sc[coeffdeg,r],stepdifference):
fi:
od:
od:
"degree", 3, "coeff", $\frac{331}{216}$

$$
\begin{aligned}
& \text { "degree", 4, "coeff", }-\frac{25}{192} \\
& \text { "degree", 5, "coeff", } \frac{1}{240}
\end{aligned}
$$

Next, the constant terms, whose period is expected to be 60. Print all constant terms up to the presumed period "stepsize". Print the difference (at step "stepsize") if they are not repeating.
> stepsize:=30;

```
    for r from 1 to stepsize do
        print(r, sc[0,r]);
```

 od:
 for r from stepsize+1 to p do
stepdifference:=sc[0,r]-sc[0,r-stepsize]:
if(stepdifference<>0) then print(r,sc[0,r],stepdifference):
fi:
od:
print("Constant terms completed.");
stepsize: $=30$

$$
1,-\frac{110413}{8640}
$$

$$
2,-\frac{478}{27}
$$

$$
3,-\frac{5303}{320}
$$

$$
4,-\frac{2269}{135}
$$

$$
5,-\frac{25705}{1728}
$$

$$
6,-\frac{86}{5}
$$

$$
7,-\frac{25193}{1728}
$$

$$
8,-\frac{2444}{135}
$$

$$
9,-\frac{4983}{320}
$$

$$
10,-\frac{443}{27}
$$

$$
11,-\frac{130253}{8640}
$$

$$
\begin{gathered}
12,-18 \\
13,-\frac{120781}{8640} \\
14,-\frac{2444}{135} \\
15,-\frac{1035}{64} \\
16,-\frac{2107}{135} \\
17,-\frac{25705}{1728} \\
18,-\frac{92}{5} \\
19,-\frac{129421}{8640} \\
20,-\frac{478}{27} \\
21,-\frac{4599}{320} \\
29,-\frac{131981}{8640} \\
30,-\frac{443}{27} \\
28,-\frac{2269}{135} \\
23,-\frac{140621}{8640} \\
24,-\frac{92}{5} \\
25,-\frac{23465}{1728} \\
27,-\frac{1035}{64} \\
295 \\
29
\end{gathered}
$$

$$
\begin{aligned}
& 31,-\frac{119053}{8640},-1 \\
& 33,-\frac{4983}{320}, 1 \\
& 35,-\frac{27433}{1728},-1 \\
& \text { 37, }-\frac{23465}{1728}, 1 \\
& 39,-\frac{5303}{320},-1 \\
& \text { 41, }-\frac{121613}{8640}, 1 \\
& 43,-\frac{129421}{8640},-1 \\
& 45,-\frac{971}{64}, 1 \\
& \text { 47, }-\frac{27433}{1728},-1 \\
& \text { 49, }-\frac{120781}{8640}, 1 \\
& \text { 51, }-\frac{4919}{320},-1 \\
& \text { 53, }-\frac{131981}{8640}, 1 \\
& 55,-\frac{25193}{1728},-1 \\
& \text { 57, }-\frac{971}{64}, 1 \\
& \text { 59, }-\frac{140621}{8640},-1 \\
& \text { "Constant terms completed." } \\
& \text { Now, the linear terms. First print all linear coefficients up to the presumed period } \\
& \text { "stepsize". Then analyze for period and print the difference (at step "stepsize") if } \\
& \text { they are not repeating. } \\
& \text { > stepsize:=6; } \\
& \text { for } r \text { from } 1 \text { to stepsize do } \\
& \text { print(r, sc[1,r]); } \\
& \text { od: }
\end{aligned}
$$

```
for r from stepsize+1 to p do
    stepdifference:=sc[1,r]-sc[1,r-stepsize]:
    if( stepdifference<>0 ) then print(r,sc[1,r],stepdifference):
fi:
od:
print("Linear coefficients completed.");
                                    stepsize:= 6
\[
1, \frac{2831}{144}
\]
\[
2, \frac{61}{3}
\]
\[
3, \frac{949}{48}
\]
\[
4, \frac{182}{9}
\]
\[
5, \frac{949}{48}
\]
\[
6, \frac{61}{3}
\]
```


"Linear coefficients completed."

The quadratic terms. First print all quadratic coefficients up to the presumed period "stepsize". Then analyze for period and print the difference (at step "stepsize") if they are not repeating.
> stepsize:=2;
for r from 1 to stepsize do
print(r, sc[2,r]);
od:
for r from stepsize+1 to p do
stepdifference:=sc[2,r]-sc[2,r-stepsize]:
if(stepdifference<>0) then print(r,sc[2,r],stepdifference):
fi:
od:
print("Quadratic coefficients completed.");
stepsize:= 2
1, $-\frac{11933}{1440}$
2, $-\frac{5989}{720}$
"Quadratic coefficients completed."

