```
> with(linalg):
Warning, the protected names norm and trace have been redefined and
unprotected
Maximum value of k in all calculations.
> maxk:=60:
Latin homogeneous 2\times3 rectangles
This is the raw data calculated by a simple method:
> for k from 1 to maxk do
    w[k]:=0:
    s[k]:=0:
        for x[2] from 1 to (k-1) do
            for x[3] from 1 to (k-1) do
            for x[4] from 1 to (k-1) do
                x[1]:=2*x[2]+2*x[3]-3*x[4]:
                    if ( (x[1]>0) and (x[1]<k) ) then
                    cs:=x[1]+x[4]:
                        x[5]:=cs-x[2]:
                        x[6]:=cs-x[3]:
                            if ( (x[5]>0) and (x[5]<k) and (x[6]>0) and (x[6]<k)
    ) then
                w[k]:=w[k]+1:
                s[k]:=s[k]+1:
                if ( (x[1]=x[2]) or (x[1]=x[3]) or (x[2]=x[3]) or
    (x[4]=x[5]) or (x[4]=x[6]) or (x[5]=x[6]) or (x[1]=x[4]) or (x
    [2]=x[5]) or (x[3]=x[6]) ) then s[k]:=s[k]-1: fi:
                fi:
                        fi:
            od:
                od:
            od:
        print(k,w[k],s[k]):
    od:
```

$$
\begin{gathered}
1,0,0 \\
2,1,0 \\
3,2,0 \\
4,9,0 \\
5,16,0 \\
6,35,0 \\
7,54,0 \\
8,91,12 \\
9,128,24 \\
10,189,48 \\
11,250,72 \\
12,341,120 \\
13,432,168 \\
14,559,240 \\
15,686,312 \\
16,855,420 \\
17,1024,528 \\
18,1241,672 \\
19,1458,816 \\
20,1729,1008 \\
21,2000,1200 \\
22,2331,1440 \\
23,2662,1680 \\
24,3059,1980 \\
25,3456,2280 \\
26,3925,2640 \\
27,4394,3000 \\
28,4941,3432 \\
29,5488,3864 \\
32,7471,5460,4872 \\
\hline 198 \\
\hline 150
\end{gathered}
$$

33, 8192, 6048
34, 9009, 6720
35, 9826, 7392
36, 10745, 8160
37, 11664, 8928
38, 12691, 9792
39, 13718, 10656
40, 14859, 11628
41, 16000, 12600
42, 17261, 13680
43, 18522, 14760
44, 19909, 15960
45, 21296, 17160
46, 22815, 18480
47, 24334, 19800
48, 25991, 21252
49, 27648, 22704
50, 29449, 24288
51, 31250, 25872
52, 33201, 27600
53, 35152, 29328
54, 37259, 31200
55, 39366, 33072
56, 41635, 35100
57, 43904, 37128
58, 46341, 39312
59, 48778, 41496
60, 51389, 43848

We expect a quasipolynomial for wand a quasipolynomial for s, both of degree 3 . We don't know the period; the following calculations are set up to do any desired period. The variables:
$\mathrm{p}=$ assumed period of quasipolynomial,
$r(1<=r<=p)$ = constituent residue,
$d=$ degree of polynomial, $d p=d+1$.
The first step sets up the period and degree.
> p:=4;

$$
\begin{equation*}
p:=4 \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
d p:=4 \tag{3}
\end{equation*}
$$

Arrays to hold the coefficients of the weak and strong polynomials. "coef" is a temporary working array.
> coef:=array(1..dp);
wcoeff:=array(1..p,1..dp);
scoeff:=array(1..p,1..dp);

$$
\begin{equation*}
\operatorname{coef}:=\operatorname{array}(1 . .4,[]) \tag{4}
\end{equation*}
$$

wcoeff:= $\operatorname{array}(1 . .4,1 . .4,[])$

$$
\text { scoeff:= array(} 1 . .4,1 \text {..4, []) }
$$

The following procedure will generate all the p different weak polynomials and p different strong polynomials, factor them, and test by substituting the next value of the argument, comparing to the raw data of the surplus period that was calculated in the first procedure). The polynomials will be saved in "wpoly[r]" and "spoly[r]".
$>$ for r from 1 to p do
The following procedure will generate the matrix of values for numbers mod r of the period for degree d with any coefficients.
$>$ v2:=array (1..dp,1..dp):
$>$ for n from 1 to dp do
for k from 1 to dp do
$\mathrm{V} 2[k, n]:=(p *(k-1)+r)^{\wedge}(n-1):$
od:
od:
print (V2) ;
This part assumes degree 3.
$>$ print ([w[r],w[r+p],w[r+2*p],w[r+3*p]]);
$>$ coef:=linsolve (V2, [w[r],w[r+p],w[r+2*p],w[r+3*p]]);
$>$ for j from 1 to dp do
$>$ wcoeff[r,j]:=coef[j]:
od;
$>$ coef:=linsolve(V2,[s[r],s[r+p],s[r+2*p],s[r+3*p]]);
$>$ for j from 1 to dp do
$>$ scoeff[r,j]:=coef[j]:
od;

$$
\begin{aligned}
& \text { V2:= array(} 1 . .4,1 \text {..4, []) } \\
& {\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 5 & 25 & 125 \\
1 & 9 & 81 & 729 \\
1 & 13 & 169 & 2197
\end{array}\right]} \\
& \text { [0, 16, 128, 432] } \\
& \text { coef: }:\left[\begin{array}{lllll}
-\frac{1}{4} & \frac{3}{4} & -\frac{3}{4} & \frac{1}{4}
\end{array}\right] \\
& \text { coef: }=\left[\begin{array}{llll}
-\frac{15}{2} & \frac{41}{4} & -3 & \frac{1}{4}
\end{array}\right] \\
& \text { wpoly }_{1}:=\frac{1}{4} x^{3}-\frac{3}{4} x^{2}+\frac{3}{4} x-\frac{1}{4} \\
& 1024 \\
& \frac{(x-1)^{3}}{4} \\
& \text { spoly }_{1}:=\frac{1}{4} x^{3}-3 x^{2}+\frac{41}{4} x-\frac{15}{2} \\
& 528 \\
& \frac{(x-1)(x-5)(x-6)}{4} \\
& \text { V2:= array(} 1 . .4,1 \text {..4, []) } \\
& {\left[\begin{array}{rrrr}
1 & 2 & 4 & 8 \\
1 & 6 & 36 & 216 \\
1 & 10 & 100 & 1000 \\
1 & 14 & 196 & 2744
\end{array}\right]} \\
& \text { [1, 35, 189, 559] }
\end{aligned}
$$

$$
\begin{aligned}
& \text { coef }:=\left[\begin{array}{llll}
-1 & \frac{3}{2} & -\frac{3}{4} & \frac{1}{4}
\end{array}\right] \\
& \text { coef: }=\left[\begin{array}{llll}
-12 & 11 & -3 & \frac{1}{4}
\end{array}\right] \\
& \text { wpoly }_{2}:=\frac{1}{4} x^{3}-\frac{3}{4} x^{2}+\frac{3}{2} x-1 \\
& 1241 \\
& \frac{(x-1)\left(x^{2}-2 x+4\right)}{4} \\
& \operatorname{spoly}_{2}:=\frac{1}{4} x^{3}-3 x^{2}+11 x-12 \\
& 672 \\
& \frac{(x-6)(x-2)(x-4)}{4} \\
& V 2:=\operatorname{array}(1 . .4,1 \text {..4, [] }) \\
& {\left[\begin{array}{rrrr}
1 & 3 & 9 & 27 \\
1 & 7 & 49 & 343 \\
1 & 11 & 121 & 1331 \\
1 & 15 & 225 & 3375
\end{array}\right]} \\
& \text { [2, 54, 250, 686] } \\
& \text { coef: }=\left[\begin{array}{llll}
-\frac{1}{4} & \frac{3}{4} & -\frac{3}{4} & \frac{1}{4}
\end{array}\right] \\
& \text { coef }:=\left[\begin{array}{llll}
-\frac{21}{2} & \frac{41}{4} & -3 & \frac{1}{4}
\end{array}\right] \\
& \text { wpoly }_{3}:=\frac{1}{4} x^{3}-\frac{3}{4} x^{2}+\frac{3}{4} x-\frac{1}{4} \\
& 1458 \\
& \frac{(x-1)^{3}}{4} \\
& \text { spoly }_{3}:=\frac{1}{4} x^{3}-3 x^{2}+\frac{41}{4} x-\frac{21}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{(x-2)(x-3)(x-7)}{4} \\
& V 2:=\operatorname{array}(1 . .4,1 \text {..4, [] }) \\
& {\left[\begin{array}{rrrr}
1 & 4 & 16 & 64 \\
1 & 8 & 64 & 512 \\
1 & 12 & 144 & 1728 \\
1 & 16 & 256 & 4096
\end{array}\right]} \\
& \text { [9, 91, 341, 855] } \\
& \text { coef }:=\left[\begin{array}{llll}
-1 & \frac{3}{2} & -\frac{3}{4} & \frac{1}{4}
\end{array}\right] \\
& \text { coef }:=\left[\begin{array}{llll}
-12 & 11 & -3 & \frac{1}{4}
\end{array}\right] \\
& \text { wpoly }_{4}:=\frac{1}{4} x^{3}-\frac{3}{4} x^{2}+\frac{3}{2} x-1 \\
& 1729 \\
& \frac{(x-1)\left(x^{2}-2 x+4\right)}{4} \\
& \text { spoly }_{4}:=\frac{1}{4} x^{3}-3 x^{2}+11 x-12 \\
& 1008 \\
& \frac{(x-6)(x-2)(x-4)}{4} \\
& \overline{\mid}>\text { for } r \text { from } 1 \text { to } p \text { do: } r \text { : spoly }[r]: \text { factor (spoly[r]): od; } \\
& \frac{1}{4} x^{3}-3 x^{2}+\frac{41}{4} x-\frac{15}{2} \\
& \frac{(x-1)(x-5)(x-6)}{4} \\
& 2 \\
& \frac{1}{4} x^{3}-3 x^{2}+11 x-12 \\
& \frac{(x-6)(x-2)(x-4)}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{4} x^{3}-3 x^{2}+\frac{41}{4} x-\frac{21}{2} \\
& \frac{(x-2)(x-3)(x-7)}{4} \\
& 4 \\
& \frac{1}{4} x^{3}-3 x^{2}+11 x-12 \\
& \frac{(x-6)(x-2)(x-4)}{4} \\
& \text { [>r:=0; } \\
& >\text { for } k \text { from } 1 \text { to maxk do } \\
& >\quad \mathrm{r}:=\mathrm{r}+1 \text { : } \\
& >\text { if (} r>p \text {) then } r:=1: f i: \\
& >\quad \text { eval (spoly[r], } x=k \text {)-s[k]: } \\
& >\text { od; } \\
& \begin{array}{c}
r:=0 \\
r:=1 \\
0 \\
r:=2 \\
0 \\
r:=3 \\
0 \\
r:=4
\end{array} \\
& 0 \\
& r:=5 \\
& 0 \\
& r:=2 \\
& 0 \\
& r:=3 \\
& 0 \\
& r:=4 \\
& 0 \\
& r:=5 \\
& 0 \\
& r:=2
\end{aligned}
$$

$$
\begin{gathered}
0 \\
r:=3 \\
0 \\
r:=4 \\
0 \\
r:=5 \\
0 \\
r:=2 \\
0 \\
r:=3 \\
0 \\
r:=4 \\
0 \\
r:=5 \\
0 \\
r:=2 \\
0 \\
r:=3 \\
r:=2 \\
0 \\
r:=5 \\
r:=4 \\
0 \\
0 \\
r:=5 \\
0 \\
r:=2 \\
0 \\
0 \\
0 \\
0 \\
0
\end{gathered}
$$

$$
\begin{gathered}
0 \\
r:=3 \\
0 \\
r:=4 \\
0 \\
r:=5 \\
0 \\
r:=2 \\
0 \\
r:=3 \\
0 \\
r:=4 \\
0 \\
r:=5 \\
0 \\
r:=2 \\
0 \\
r:=3 \\
r:=2 \\
0 \\
r:=5 \\
r:=4 \\
0 \\
0 \\
r:=5 \\
0 \\
r:=2 \\
0 \\
0 \\
0 \\
0 \\
0
\end{gathered}
$$

$$
\begin{gathered}
0 \\
r:=3 \\
0 \\
r:=4 \\
0 \\
r:=5 \\
0 \\
r:=2 \\
0 \\
r:=3 \\
0 \\
r:=4 \\
0 \\
r:=5 \\
0 \\
r:=2 \\
0 \\
r:=3 \\
r:=2 \\
0 \\
r:=5 \\
r:=4 \\
0 \\
0 \\
r:=5 \\
0 \\
r:=2 \\
0 \\
0 \\
0 \\
0 \\
0
\end{gathered}
$$

$$
\begin{align*}
& 0 \\
& r:=3 \\
& 0 \\
& r:=4 \\
& 0 \\
& \text { [}>\text { for } r \text { from } 1 \text { to } p \text { do: } r \text { : wpoly }[r] \text { : factor (wpoly[r]): od; } \tag{8}\\
& \frac{1}{4} x^{3}-\frac{3}{4} x^{2}+\frac{3}{4} x-\frac{1}{4} \\
& \frac{(x-1)^{3}}{4} \\
& 2 \\
& \frac{1}{4} x^{3}-\frac{3}{4} x^{2}+\frac{3}{2} x-1 \\
& \frac{(x-1)\left(x^{2}-2 x+4\right)}{4} \\
& 3 \\
& \frac{1}{4} x^{3}-\frac{3}{4} x^{2}+\frac{3}{4} x-\frac{1}{4} \\
& \frac{(x-1)^{3}}{4} \\
& 4 \\
& \frac{1}{4} x^{3}-\frac{3}{4} x^{2}+\frac{3}{2} x-1 \\
& \frac{(x-1)\left(x^{2}-2 x+4\right)}{4} \\
& \text { [}>x \text { :=1; for } k \text { from } 1 \text { to maxk do } \\
& \text { eval (wpoly[r], } x=k \text {) }-w[k] \text { : } \\
& r:=3-r \text { : } \\
& \text { od; } \\
& r:=1 \tag{9}\\
& 0 \\
& r:=2 \\
& 0 \\
& r:=1
\end{align*}
$$

$$
\begin{gathered}
0 \\
r:=2 \\
0 \\
r:=1 \\
r:=2 \\
r:=1 \\
0 \\
r:=2 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{gathered}
$$

$$
\begin{gathered}
0 \\
r:=2 \\
0 \\
r:=1 \\
r:=2 \\
r:=1 \\
0 \\
r:=2 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{gathered}
$$

$$
\begin{gathered}
0 \\
r:=2 \\
0 \\
r:=1 \\
r:=2 \\
r:=1 \\
0 \\
r:=2 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{gathered}
$$

0	
r	$0=2$
0	
$r:=1$	
0	
$r:=2$	
0	
$r:=1$	
0	
$r:=2$	
0	
$r:=1$	
0	
$r:=2$	
0	
$r:=1$	
0	
$r:=2$	
0	
$r:=1$	

