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with(linalg):
Warning, the protected names norm and trace have been redefined and 
unprotected

Maximum value of k in all calculations.
maxk:=60:

Latin homogeneous 2x3 rectangles
This is the raw data calculated by a simple method:

for k from 1 to maxk do
  w[k]:=0:
  s[k]:=0:
   for x[2] from 1 to (k-1) do 
    for x[3] from 1 to (k-1) do 
     for x[4] from 1 to (k-1) do 
       x[1]:=2*x[2]+2*x[3]-3*x[4]:
       if ( (x[1]>0) and (x[1]<k) ) then 
        cs:=x[1]+x[4]: 
        x[5]:=cs-x[2]: 
        x[6]:=cs-x[3]:
          if ( (x[5]>0) and (x[5]<k) and (x[6]>0) and (x[6]<k) 
) then 
            w[k]:=w[k]+1:
            s[k]:=s[k]+1:
            if ( (x[1]=x[2]) or (x[1]=x[3]) or (x[2]=x[3]) or 
(x[4]=x[5]) or (x[4]=x[6]) or (x[5]=x[6]) or (x[1]=x[4]) or (x
[2]=x[5]) or (x[3]=x[6]) ) then s[k]:=s[k]-1: fi:
          fi:
        fi:
     od:
    od:
   od:
  print(k,w[k],s[k]):
od:
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We expect a quasipolynomial for w and a quasipolynomial for s, both of degree 3.  
We don't know the period; the following calculations are set up to do any desired 
period.  The variables: 
p = assumed period of quasipolynomial, 
r (1<=r<=p) = constituent residue, 
d = degree of polynomial, dp = d+1.
The first step sets up the period and degree.

p:=4;

dp := 3+1;

Arrays to hold the coefficients of the weak and strong polynomials.  "coef" is a 
temporary working array.

coef:=array(1..dp); 
wcoeff:=array(1..p,1..dp);
scoeff:=array(1..p,1..dp);

The following procedure will generate all the p different weak polynomials and p 
different strong polynomials, factor them, and test by substituting the next value of 
the argument, comparing to the raw data of  the surplus period that was calculated 
in the first procedure).  The polynomials will be saved in "wpoly[r]" and "spoly[r]".

for r from 1 to p do
The following procedure will generate the matrix of values for  numbers mod r of the
period for degree d with any coefficients.

V2:=array(1..dp,1..dp):
for n from 1 to dp do 
  for k from 1 to dp do
    V2[k,n]:=(p*(k-1)+r)^(n-1):
  od:
od:
print(V2);

This part assumes degree 3.
print([w[r],w[r+p],w[r+2*p],w[r+3*p]]);
coef:=linsolve(V2,[w[r],w[r+p],w[r+2*p],w[r+3*p]]); 
for j from 1 to dp do 
  wcoeff[r,j]:=coef[j]:
od;

 coef:=linsolve(V2,[s[r],s[r+p],s[r+2*p],s[r+3*p]]);
for j from 1 to dp do 
  scoeff[r,j]:=coef[j]:
od;
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wpoly[r]:=wcoeff[r,4]*x^3+wcoeff[r,3]*x^2+wcoeff[r,2]*x+wcoeff
[r,1]; subs(x=r+4*p,wpoly[r]); factor(wpoly[r]);

spoly[r]:=scoeff[r,4]*x^3+scoeff[r,3]*x^2+scoeff[r,2]*x+scoeff
[r,1]; subs(x=r+4*p,spoly[r]); factor(spoly[r]);

od;
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for r from 1 to p do: r: spoly[r]: factor(spoly[r]): od;
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r:=0;
for k from 1 to maxk do 
  r:=r+1: 
  if (r>p) then r:=1: fi:
  eval(spoly[r],x=k)-s[k]: 
od;
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for r from 1 to p do: r: wpoly[r]: factor(wpoly[r]): od;

r:=1;for k from 1 to maxk do 
  eval(wpoly[r],x=k)-w[k]: 
  r:=3-r: 
od;
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