
(1)(1)

with(linalg):
Warning, the protected names norm and trace have been redefined and
unprotected

Maximum value of k in all calculations.
maxk:=60:

Latin homogeneous 2x3 rectangles
This is the raw data calculated by a simple method:

for k from 1 to maxk do
 w[k]:=0:
 s[k]:=0:
 for x[2] from 1 to (k-1) do
 for x[3] from 1 to (k-1) do
 for x[4] from 1 to (k-1) do
 x[1]:=2*x[2]+2*x[3]-3*x[4]:
 if ((x[1]>0) and (x[1]<k)) then
 cs:=x[1]+x[4]:
 x[5]:=cs-x[2]:
 x[6]:=cs-x[3]:
 if ((x[5]>0) and (x[5]<k) and (x[6]>0) and (x[6]<k)
) then
 w[k]:=w[k]+1:
 s[k]:=s[k]+1:
 if ((x[1]=x[2]) or (x[1]=x[3]) or (x[2]=x[3]) or
(x[4]=x[5]) or (x[4]=x[6]) or (x[5]=x[6]) or (x[1]=x[4]) or (x
[2]=x[5]) or (x[3]=x[6])) then s[k]:=s[k]-1: fi:
 fi:
 fi:
 od:
 od:
 od:
 print(k,w[k],s[k]):
od:

(1)(1)

(1)(1)

(2)(2)

(5)(5)

(3)(3)

(4)(4)

(1)(1)

We expect a quasipolynomial for w and a quasipolynomial for s, both of degree 3.
We don't know the period; the following calculations are set up to do any desired
period. The variables:
p = assumed period of quasipolynomial,
r (1<=r<=p) = constituent residue,
d = degree of polynomial, dp = d+1.
The first step sets up the period and degree.

p:=4;

dp := 3+1;

Arrays to hold the coefficients of the weak and strong polynomials. "coef" is a
temporary working array.

coef:=array(1..dp);
wcoeff:=array(1..p,1..dp);
scoeff:=array(1..p,1..dp);

The following procedure will generate all the p different weak polynomials and p
different strong polynomials, factor them, and test by substituting the next value of
the argument, comparing to the raw data of the surplus period that was calculated
in the first procedure). The polynomials will be saved in "wpoly[r]" and "spoly[r]".

for r from 1 to p do
The following procedure will generate the matrix of values for numbers mod r of the
period for degree d with any coefficients.

V2:=array(1..dp,1..dp):
for n from 1 to dp do
 for k from 1 to dp do
 V2[k,n]:=(p*(k-1)+r)^(n-1):
 od:
od:
print(V2);

This part assumes degree 3.
print([w[r],w[r+p],w[r+2*p],w[r+3*p]]);
coef:=linsolve(V2,[w[r],w[r+p],w[r+2*p],w[r+3*p]]);
for j from 1 to dp do
 wcoeff[r,j]:=coef[j]:
od;

 coef:=linsolve(V2,[s[r],s[r+p],s[r+2*p],s[r+3*p]]);
for j from 1 to dp do
 scoeff[r,j]:=coef[j]:
od;

(5)(5)

(1)(1)

wpoly[r]:=wcoeff[r,4]*x^3+wcoeff[r,3]*x^2+wcoeff[r,2]*x+wcoeff
[r,1]; subs(x=r+4*p,wpoly[r]); factor(wpoly[r]);

spoly[r]:=scoeff[r,4]*x^3+scoeff[r,3]*x^2+scoeff[r,2]*x+scoeff
[r,1]; subs(x=r+4*p,spoly[r]); factor(spoly[r]);

od;

(5)(5)

(1)(1)

(6)(6)

(5)(5)

(1)(1)

for r from 1 to p do: r: spoly[r]: factor(spoly[r]): od;

(6)(6)

(5)(5)

(7)(7)

(1)(1)

r:=0;
for k from 1 to maxk do
 r:=r+1:
 if (r>p) then r:=1: fi:
 eval(spoly[r],x=k)-s[k]:
od;

(6)(6)

(5)(5)

(7)(7)

(1)(1)

(6)(6)

(5)(5)

(7)(7)

(1)(1)

(6)(6)

(5)(5)

(7)(7)

(1)(1)

(6)(6)

(5)(5)

(7)(7)

(8)(8)

(9)(9)

(1)(1)

for r from 1 to p do: r: wpoly[r]: factor(wpoly[r]): od;

r:=1;for k from 1 to maxk do
 eval(wpoly[r],x=k)-w[k]:
 r:=3-r:
od;

(6)(6)

(5)(5)

(7)(7)

(9)(9)

(1)(1)

(6)(6)

(5)(5)

(7)(7)

(9)(9)

(1)(1)

(6)(6)

(5)(5)

(9)(9)

(1)(1)

(7)(7)

(6)(6)

(5)(5)

(7)(7)

(9)(9)

(1)(1)

