Publications

  1. Master Thesis: Periodic solutions of Hamiltonian systems and differential systems. Nankai Institute of Mathematics, Tianjin, China, June 1999.

  2. PhD Thesis: Eigenfunction Estimates on Compact Manifolds with Boundary and H\"ormander Multiplier Theorem. Johns Hopkins University, Baltimore, Maryland, May 2004.(PDF)

  1. Xiangjin Xu, Subharmonic solutions of a class of non-autonomous Hamiltonian systems. Acta Sci. Nat. Univer. Nankai. Vol. 32, No.2, (1999), pp. 46-50.(In Chinese)

  2. Yiming Long, Xiangjin Xu, Periodic solutions for a class of nonautonomous Hamiltonian systems. Nonlinear Anal. Ser. A: Theory Methods, 41 (2000), no. 3-4, 455-463. (PDF)

  3. Xiangjin Xu, Homoclinic orbits for first order Hamiltonian systems possessing super-quadratic potentials. Nonlinear Anal. Ser. A: Theory Methods, 51 (2002), no. 2, 197-214. (PDF)

  4. Xiangjin Xu, Periodic solutions for non-autonomous Hamiltonian systems possessing super-quadratic potentials. Nonlinear Anal. Ser. A: Theory Methods, 51 (2002), no. 6, 941-955. (PDF)

  5. Xiangjin Xu, Subharmonics for first order convex nonautonomous Hamiltonian systems. J. Dynam. Differential Equations 15 (2003), no. 1, 107-123. (PDF)

  6. Xiangjin Xu, Multiple solutions of super-quadratic second order dynamical systems. Dynamical systems and differential equations (Wilmington, NC, 2002). Discrete Contin. Dyn. Syst. 2003, suppl., 926-934. (PDF)

  7. Xiangjin Xu, Sub-harmonics of first order Hamiltonian systems and their asymptotic behaviors. Nonlinear differential equations, mechanics and bifurcation (Durham, NC, 2002). Discrete Contin. Dyn. Syst. Ser. B 3 (2003), no. 4, 643-654. (PDF)

  8. Xiangjin Xu, Homoclinic orbits for first order Hamiltonian systems with convex potentials. Advanced Nonlinear Studies 6 (2006), 399-410. (PDF)

  9. Xiangjin Xu, New Proof of H\"ormander Multiplier Theorem on Compact manifolds without boundary. Proc. Amer. Math. Soc. 135 (2007), 1585-1595.(PDF)

  10. Roberto Triggiani, Xiangjin Xu, Pointwise Carleman Estimates, Global Uniqueness, Observability, and Stabilization for Schrodinger Equations on Riemannian Manifolds at the $H^1$-Level. AMS Contemporary Mathematics, Volume 426, 2007, 339-404. (PDF)

  11. Xiangjin Xu, Gradient estimates for eigenfunctions of compact manifolds with boundary and the H\"ormander multiplier theorem. Forum Mathematicum 21:3 (May 2009), pp. 455-476. (PDF)

  12. Xiangjin Xu, Eigenfunction estimates for Neumann Laplacian on compact manifolds with boundary and multiplier problems. Proc. Amer. Math. Soc. 139 (2011), 3583-3599.(PDF)

  13. Junfang Li, Xiangjin Xu, Differential Harnack inequalities on Riemannian manifolds I : linear heat equation.Advance in Mathematics, Volume 226, Issue 5, (March, 2011) Pages 4456-4491 doi:10.1016/j.aim.2010.12.009 (arXiv:0901.3849 )

  14. Liangui Wang, Xiangjin Xu, Hybrid state feedback, robust $H_{\infty}$ control for a class switched systems with nonlinear uncertainty. Z. Qian et al.(Eds.):Recent Advances in CSIE 2011, Lecture Notes in Electrical Engineering, Volume 129, 2012, pp 197-202

  15. Xiangjin Xu, Gradient estimates for $u_t=\Delta F(u)$ on manifolds and some Liouville-type theorems. Journal of Differential Equation (2011) doi:10.1016/j.jde.2011.08.004 arXiv:0805.3676

  16. Xiangjin Xu, Upper and lower bounds for normal derivatives of spectral clusters of Dirichlet Laplacian. Journal of Mathematical Analysis and Applications, Volume 387, Issue 1, (March, 2012), Pages 374-383 doi:10.1016/j.jmaa.2011.09.003 , ArXiv:1004.2517


Last updated: 05/01/2013