Manuscripts
Duan, J., Qiao, X. , and Cheng, G. (2022), “Enhanced Nearest Neighbor Classification for Crowdsourcing”.
[arXiv]
Cohen, A., Yu, L., Qiao, X. , and Tong, X., “Maximum Entropy Diverse Exploration: Disentangling Maximum Entropy Reinforcement Learning”.
[PDF] [arXiv]
Publications
Barrett, J., Meng, H., Zhang, Z., Chen, S., Zhao, L., Alsop, D., Qiao, X. , and Dai, W. (2024), “An Improved Spectral Clustering Method for Accurate Detection of Brain Resting-state Networks ,” NeuroImage , 120811, ISSN 1053-8119.
Khosravi-Kamrani, P., Qiao, X. , Zanardi, G., Wiesen, C., Slade, G., and Frazier-Bowers, S. (2022), “A Machine Learning Approach to Determine Prognosis of Class III Malocclusion Patients ,” American Journal of Orthodontics & Dentofacial Orthopedics , 161, 1, pp. e1–e11.
[PDF]
Dai, W., Wagh, S., Chettiar, S., Zhou, G., Roy, R., Qiao, X. , Visich, P., and Hoffman, E. (2021), “Blunted circadian cortisol in children is associated with poor cardiovascular health and may reflect circadian misalignment ,” Psychoneuroendocrinology , 129, 105252.
[PDF]
Meng, H., Zhao, Y., Fu, H., and Qiao, X. (2020), “Near-optimal Individualized Treatment Recommendations ”, Journal of Machine Learning Research , 21, 183, pp. 1–28.
[PDF] [arXiv]
Curtis, T., Shi, M., and Qiao, X. (2020), “Patience is not always a virtue: effects of terrain complexity on the host-seeking behaviour of adult blacklegged ticks, Ixodes scapularis , in the presence of a stationary host ,” Medical and Veterinary Entomology , 34 , 3, pp. 309–315.
[PDF]
Beltre, A., Zaman, S., Chiu, K., Pamidighantam, S., Qiao, X. , and Govindaraju, M. (2019), “Towards Run Time Estimation of the Gaussian Chemistry Code for SEAGrid Science Gateway ,” In Proceedings of the Practice and Experience in Advanced Research Computing on Rise of the Machines (learning) , pp. 1–8.
[PDF]
Cohen, A., Qiao, X. , Yu, L., Way, E. and Tong, X. (2019), “Diverse Exploration via Conjugate Policies for Policy Gradient Methods ,” In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19) , 33, pp. 3404–3411.
[PDF] [arXiv]
Chen, Y., Duan, W., Sehrawat, P., Chauhan, V., Alfaro, F., Gavrieli, A., Qiao, X. , Novak, V., Dai, W. (2019), “Improved perfusion pattern score association with type 2 diabetes severity using machine learning pipeline: Pilot study ,” Journal of Magnetic Resonance in Imaging , 49, pp. 834–844.
[PDF]
Barrett, J., Meng, H., Chen, S., Zhao, L., Alsop, D., Qiao, X. , Dai, W. (2018), “Resting-state Brain Networks using Spectral Clustering Analysis ,” Joint Annual Meeting ISMRM-ESMRMB 2018, Paris, France, June, 2018, In Proceedings of the International Society for Magnetic Resonance in Medicine , 26, 2746.
[PDF]
Sangrody, H., Zhou, N., Qiao, X. (2017), “Probabilistic Models for Daily Peak Loads at Distribution Feeders ,” 2017 IEEE PES General Meeting, July 16-20, 2017, Chicago, IL, USA, pp. 1–5.
[PDF]
Vargason, T.J., Cohn, J., Rios, D., Schultz, O., Cleary, J., Lau, D., Land, W., Schaffer, D., Li, Y., Chou, C.A., Syouri, S., Sidhu, J., Nelson, M., and Qiao, X. (2016), “A Clinical Decision Support System for Malignant Pleural Effusion Analysis ,” 2016 Industrial and Systems Engineering Research Conference/IIE Annual Conference & Expo 2016, At Anaheim, CA, USA.
[PDF] [ORB]
Zhang, X., Zhang, D., Jia, H., Feng, Q., Wang, D. Liang, D, Wu, X., Li, J., Tang, L., Li, Y., Lan, Z., Chen, B., Li, Y., Zhong, H., Xie, H., Jie, Z., Chen, W., Tang, S., Xu, X., Wang, X., Cai, X., Liu, S., Xia, Y., Li, J., Qiao, X. , Al-Aama, J. Y., Chen, H., Wang, L., Wu, Q., Zhang, F., Zheng, W., Li, Y., Zhang, M., Luo, G., Xue, W., Xiao, L., Li, J., Chen, W., Xu, X., Yin, Y., Yang, H., Wang, J., Kristiansen, K., Liu, L., Li, T., Huang, Q., Li, Y. and Wang, J. (2015), “The Oral and Gut Microbiomes are Perturbed in Rheumatoid Arthritis and Partly Normalized after Treatment ,” Nature Medicine , 21 , pp. 895–905.
[PDF]
Wright, R., Qiao, X. , Loscalzo, S., and Yu, L. (2015), “CFQI: Fitted Q-Iteration with Complex Returns ,” in Proceedings of the Fourteenth International Conference on Autonomous Agents and Multiagent Systems (AAMAS-15) , pp. 163–170 (full paper), Istanbul, Turkey, May 2015.
[PDF]
Qiao, X. (2015), “Learning Ordinal Data ,” Wiley Interdisciplinary Reviews: Computational Statistics (invited), 7 , 5, pp. 341–346.
[PDF]
Wright, R., Qiao, X. , Loscalzo, S. and Yu, L. (2015), “Improving Approximate Value Iteration with Complex Returns by Bounding ,” in Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI-15) , pp. 3087–3093 (full paper, plenary presentation), Austin, TX, January 2015.
[PDF]
Land, W.H., Ma, X., Barnes, E., Qiao, X. , Heine, J., Masters, T. and Park, J.W. (2012), “PNN/GRNN Ensemble Processor Design for Early Screening of Breast Cancer ,” Procedia Computer Science , Elsevier, 2012, Vol. 12, pp. 438–443.
[PDF]
Schaffer, J.D., Park, J.W, Barnes, E., Lu, Q., Qiao, X. , Deng, Y., Li, Y. and Land, W.H. (2012), “GRNN Ensemble Classifier for Lung Cancer Prognosis Using Only Demographic and TNM features ,” Procedia Computer Science , Elsevier, 2012, Vol. 12, pp. 450–455.
[PDF]
Land, W.H., Jr., Qiao, X. , Margolis, D.E., Ford, W.S., Paquette, C.T., Perez-Rogers, J.F., Borgia, J.A. and Deng, Y. (2011), “Kernelized partial least squares for feature reduction and classification of gene microarray data ,” BMC Systems Biology , 5(Suppl 3):S13.
[PDF]
Land, W.H., Jr., Ford, W., Park, J.W., Mathur, R., Hotchkiss, N., Heine, J., Eschrich, S., Qiao, X. and Yeatman, T. (2011), “Partial Least Squares (PLS) Applied to Medical Bioinformatics ,” In Cihan H. Dagli, Sue Turner, and Latesha Zach, editors, Procedia Computer Science , volume 6 of Complex Adaptive Systems, pp. 273–278.
[PDF]
Land, W.H., Jr., Qiao, X. , Margolis, D. and Gottlieb, R. (2011), “A new tool for survival analysis: evolutionary programmingevolutionary strategies (EP ES) support vector regression hybrid using both censored non-censored (event) data ”, In Cihan H. Dagli, Sue Turner, and Latesha Zach, editors, Procedia Computer Science/, volume 6 of Complex Adaptive Systems, pp. 267–272. (This paper won the best application paper award in CAS 2011.)
[PDF]
Margolis, D., Land, W.H., Jr., Gottlieb, R. and Qiao, X. (2011), “A complex adaptive system using statistical learning theory as an inline preprocess for clinical survival analysis ”, In Cihan H. Dagli, Sue Turner, and Latesha Zach, editors, Procedia Computer Science , volume 6 of Complex Adaptive Systems, pp. 279–284.
[PDF]
Qiao, X. , Zhang, H.H., Liu, Y., Todd, M.J. and Marron, J. S. (2010), “Weighted distance weighted discrimination and its asymptotic properties ,” Journal of the American Statistical Association , 105 , 489, pp. 401–414.
[PDF]