My office is Room 115 in Whitney Hall, but in Spring 2021 I will be teaching online and will only have office hours virtually through Zoom by appointment. To arrange for an office hour appointment, send an email at least 2 hours ahead of time to my email address: alex@math.binghamton.edu

Class meetings will all be held virtually online using Zoom. You may use the following link to start Zoom and join the class meetings of Section 6 scheduled for MWF 1:10 - 2:40 PM, from Feb 12 through May 17, 2021: Zoom link to Math 304-6 class meetings. The Zoom meeting ID is: 976 5106 5766

You may also wish to download and import the following iCalendar (.ics) files to your calendar system. Calendar schedule of class meetings for Section 6.

The final exam is scheduled for Tuesday, May 25, at 8:00 - 10:00 AM, given online through zoom. The special zoom meeting for the final exam of Section 6 has the following link: Zoom link to Math 304-6 final exam. The zoom meeting ID is: 970 4282 9624. All students taking the final exam are expected to attend this zoom meeting, will download the exam through Gradescope and return the answers through Gradescope.

``Linear Algebra" by Jim Hefferon, available for free download from the following link: ``Linear Algebra" by Jim Hefferon.

Instructions for students to register in Webwork will be posted on the main Math 304 webpage.

The entire book will be covered if time permits. A list of major topics which may be covered is given at the end of this page.

Since classes, exams and quizzes are being given online, all submitted work should be submitted as an electronic pdf file. I highly recommend using CamScanner for this purpose. It is available from this website: CamScanner Website.

**All submitted documents should be sent to me using Gradescope according to the directions in
the following file:**
Gradescope Submitting Guide.

Here is the webpage for direct access to Gradescope: Gradescope login page.

The eight sections of this course will be run separately by each instructor. This page contains details relevant only to my Section 6, but some general advice probably applies to everyone. There will be ten quizzes administered in class for 20% of your course grade. Homework done and evaluated through Webwork will count for 5% of your course grade. Three 90-minute exams will be administered on announced dates during a normal class time. There will be one Final Exam (2 hours long) during the scheduled Finals period. Each 90-minute exam will be worth 20%, and the Final Exam will be worth 15%. The material being tested in each exam will be determined and announced approximately one week before the exam. The Final Exam will be comprehensive, covering the whole course. ANYONE UNABLE TO TAKE AN EXAM SHOULD CONTACT THE INSTRUCTOR AHEAD OF TIME TO EXPLAIN THE REASON. A MESSAGE CAN BE LEFT AT THE MATH DEPT OFFICE (777-2147). NO ONE SHOULD MISS THE FINAL!

Information about the general scheduling of exams is posted on the main Math 304 page, but detailed information for this section will be posted here.

Exam 1 for Section 6 of Math 304 will be given during scheduled class time, 1:10 - 2:40 on Monday, March 15, 2021. The exam questions will be made available on Gradescope starting at 1:00 PM to give students a chance to download and print it out (if desired). Prof. Feingold will be available to answer questions during the class period, and all students taking the exam should be signed in to Zoom for the class meeting with cameras on for proctoring. To give students time to scan and submit their solutions, the time limit for submitting on Gradescope is 3:00 PM.

No use of outside help is allowed during the exam. Students may consult the course notes, but that will cost you time, so it will be better if you know the material well enough that you don't need to look at the notes during the exam. No use of computer software to solve the problems is allowed. All work needed to solve the problems must be shown on the submitted solutions in order to get credit. Some problems have short answers and may not require explanations if the instructions say so.

In case there is any problem accessing Exam 1 through Gradescope, it will also be posted on Blackboard, available at 1:00 PM on March 15. Students should submit solutions through Gradescope if possible, but in case that is not possible, solutions can also be sent as a pdf file attachment by email to feingold@binghamton.edu or submitted to Blackboard.

After each Exam is graded and returned, solutions will be posted here, along with a letter grade interpretation of the numerical score.

Any student with a special problem or a finals conflict must contact the instructor (me) as soon as possible to make arrangements.

Practice problems of various kinds will be posted on the main Math 304 webpage.

Feb 12: Lecture recording and notes: Math 304-6 Lecture Notes pages 1-16 and Panopto recording of Lecture 1 on Feb. 12, 2021.

Feb 15: Lecture recording and notes: Math 304-6 Lecture Notes pages 17-26 and Panopto recording of Lecture 2 on Feb. 15, 2021.

Feb 17: Lecture recording and notes (note that page 36 has been modified on 2-22-2021): Math 304-6 Lecture Notes pages 27-36 and Panopto recording of Lecture 3 on Feb. 17, 2021.

Feb 19: Lecture recording and notes: Math 304-6 Lecture Notes pages 37-47 and Panopto recording of Lecture 4 on Feb. 19, 2021.

Feb 22: Lecture recording and notes: Math 304-6 Lecture Notes pages 48-61 and Panopto recording of Lecture 5 on Feb. 22, 2021.

Feb 24: Lecture recording and notes: Math 304-6 Lecture Notes pages 62-75 and Panopto recording of Lecture 6 on Feb. 24, 2021.

Feb 26: Lecture recording and notes: Math 304-6 Lecture Notes pages 76-85 and Panopto recording of Lecture 7 on Feb. 26, 2021.

Mar 1: Lecture recording and notes: Math 304-6 Lecture Notes pages 86-100 and Panopto recording of Lecture 8 on Mar. 1, 2021.

Mar 3: Lecture recording and notes: Math 304-6 Lecture Notes pages 101-106_Plus3 and Panopto recording of Lecture 9 on Mar. 3, 2021.

Mar 5: Lecture recording and notes: Math 304-6 Lecture Notes pages 107-118 and Panopto recording of Lecture 10 on Mar. 5, 2021.

Mar 8: Lecture recording and notes: Math 304-6 Lecture Notes pages 119-127 and Panopto recording of Lecture 11 on Mar. 8, 2021.

Mar 10: Lecture recording and notes: Math 304-6 Lecture Notes pages 128-134_Plus5 and Panopto recording of Lecture 12 on Mar. 10, 2021.

Mar 12: Lecture recording and notes: Math 304-6 Lecture Notes Exam1_Review and Panopto recording of Lecture 13 on Mar. 12, 2021.

Mar 19: Lecture recording and notes: Math 304-6 Lecture Notes 134.1-138.3.pdf and Panopto recording of Lecture 14 on Mar. 19, 2021.

Mar 22: Lecture recording and notes: Math 304-6 Lecture Notes 138.4-138.94.pdf and Panopto recording of Lecture 15 on Mar. 22, 2021.

Mar 24: Lecture recording and notes: Math 304-6 Lecture Notes 138.95-147.pdf and Panopto recording of Lecture 16 on Mar. 24, 2021.

Mar 26: Lecture recording and notes: Math 304-6 Lecture Notes 148-155+Webwork.pdf and Panopto recording of Lecture 17 on Mar. 26, 2021.

Mar 29: Lecture recording and notes: Math 304-6 Lecture Notes 156-162.pdf and Panopto recording of Lecture 18 on Mar. 29, 2021.

Mar 31: Lecture recording and notes: Math 304-6 Lecture Notes 163-175.pdf and Panopto recording of Lecture 19 on Mar. 31, 2021.

April 2: Lecture recording and notes: Math 304-6 Lecture Notes 176-188.pdf and Panopto recording of Lecture 20 on April 2, 2021.

April 5: Lecture recording and notes: Math 304-6 Lecture Notes 189-200.pdf and Panopto recording of Lecture 21 on April 5, 2021.

April 7: Lecture recording and notes: Math 304-6 Lecture Notes 201-216.pdf and Panopto recording of Lecture 22 on April 7, 2021.

April 9: Lecture recording and notes: Math 304-6 Lecture Notes 217-218.pdf and Panopto recording of Lecture 23 on April 9, 2021.

April 12: Lecture recording and notes: Math 304-6 Lecture Notes 218.1-218.2.pdf and Panopto recording of Lecture 24 (Review for Exam 2) on April 12, 2021.

April 14: Lecture recording and notes: Math 304-6 Lecture Notes 218.3-218.9.pdf and Panopto recording of Lecture 25 (Review for Exam 2) on April 14, 2021.

April 19: Lecture recording and notes: Math 304-6 Lecture Notes 219-231.pdf and Panopto recording of Lecture 26 on April 19, 2021.

April 21: Lecture recording and notes: Math 304-6 Lecture Notes 232-238.pdf and Panopto recording of Lecture 27 on April 21, 2021.

April 23: Lecture recording and notes: No new notes today, reviewed old notes about eigenvectors, eigenvalues, examples of diagonalization, Exam 2 and webwork problems. Panopto recording of Lecture 28 on April 23, 2021.

April 26: Lecture recording and notes: Math 304-6 Lecture Notes 239-250.pdf and Panopto recording of Lecture 29 on April 26, 2021.

April 28: Lecture recording and notes: Math 304-6 Lecture Notes 251-263.pdf and Panopto recording of Lecture 30 on April 28, 2021.

April 30: Lecture recording and notes: Math 304-6 Lecture Notes 264-276.pdf and Panopto recording of Lecture 31 on April 30, 2021.

May 3: Lecture recording and notes: Math 304-6 Lecture Notes 277-287.pdf and Panopto recording of Lecture 32 on May 3, 2021.

May 5: Lecture recording and notes: Math 304-6 Lecture Notes 288-295.pdf and Panopto recording of Lecture 33 on May 5, 2021.

May 7: Lecture recording and notes: Math 304-6 Lecture Notes 296-298.pdf and Panopto recording of Lecture 34 on May 7, 2021.

May 10: Lecture recording (review for Quiz 10 and Exam 3): Panopto recording of Lecture 35 on May 10, 2021.

May 12: Lecture recording and notes: Math 304-6 Lecture Notes 299-300.pdf and Panopto recording of Lecture 35 on May 12, 2021.

May 17: Lecture recording of review for final exam: Panopto recording of Lecture 36 on May 17, 2021.

A practice exam 1 and its solutions can be downloaded as a pdf file from this link: Practice Exam 1 and its solutions.

The following file contains a summary of results presented in class and needed for exams. Reading this file is not a replacement for attending class, but could be helpful if you miss some classes because of illness. Here is the link to it: Math304-6 Topics Summary.

A practice exam 2 and its solutions can be downloaded as a pdf file from this link: Practice Exam 2 and its solutions.

A practice exam 3 and its solutions can be downloaded as a pdf file from this link: Practice Exam 3 and its solutions.

The numerial score on each exam will be given a letter grade interpretation, giving each student a letter grade as well as a number grade, and the Total of all points earned will also be given a letter grade interpretation. The letter grades on the exams indicate how a student is doing, and will be taken into consideration in making the interpretation for the Totals. The course grade will be determined by the interpretation of Total points earned. Only borderline cases may be subject to further adjustment based on homework, classroom participation and attendance, as determined by the instructor. Any cases of cheating will be subject to investigation by the Academic Honesty Committee of Harpur College.

Class attendance is required at all scheduled meetings, and sleeping in class does not count as being there. Questions are welcomed at any time during a lecture. At the start of each class be ready to ask questions about homework problems or about the previous lecture. We want to create an atmosphere where you all feel very free to ask questions and make comments. If anyone feels that the instructor has not answered a question clearly, completely, and with respect and consideration for the student who asked it, please let your instructor know about it immediately so he/she can correct the problem. You can do this in class or in office hours, verbally or in writing, on paper or by email, or by whatever means makes you most comfortable, but with enough detail that your instructor can understand what you think was done wrong. It will be too late to help if you only complain at the end of the course. If you are not satisfied by the response of your instructor, please contact the course coordinator, Prof. Alex Feingold.

The material is a combination of theory and calculation, and it is necessary to understand the theory in order to do sensible calculations and interpret them correctly. There is a significant difference between training and education, and we feel strongly that our goal at this university is to educate you, not just to train you to do computations. Theory is not presented to impress you with our knowledge of the subject, but to give you the depth of understanding expected of an adult with a university education in this subject. Some of your instructors have many years of experience teaching mathematics at the university level, but it will require your consistent concentrated study to master this material. While much learning can take place in the classroom, a significant part of it must be done by you outside of class. Using the book, class notes, homework exercises, only you can achieve success in this course. Students who do not take this course seriously, who do not take this advice, are not likely to be rewarded at the end. We are here to help and guide you, and we also grade the exams to judge how much you have learned, but grades are earned by you, not given by us. Exams will be a combination of theory questions and calculations appropriate for a course of this level.

For each section of material covered there will be an assignment of problems from the textbook. Homework will be handled through the online system Webwork, and information about how to access it has been provided on the main Math 304 webpage. The homework counts as 5% of your course grade.

Extra topics if time allows (usually not enough time for these in the elementary linear course) :

These paragraphs will be updated before each exam is given.

The list of topics below is most closely related to my lecture notes, but some students have asked to know which sections of the textbook (Heffron) contain these topics, so I am listing those here: Ch. 1, I. 1-3 (linear systems), III. 1-2 (RREF), Ch. 2, I. 1-2 (vector spaces), II. 1 (linear independence), III. 1-3 (basis, dimension), Ch. 3, I. 1-2 (linear maps), II. 1-2, III. 1-2 (matrix representation of maps), IV. 1-4 (Matrix algebra).

Linear Systems, solving by row reduction of the augmented matrix [A|B] and interpretation in terms of free and dependent variables.

Consistent vs. inconsistent systems. Homogeneous systems AX=O.

Elementary row operations and reduction to Reduced Row Echelon Form (RREF).

Matrices, the set of all mxn real matrices, R^{m}_{n}, addition of
matrices, multiplication of a matrix by a real number (scalar).

The span of a set of vectors in R^{m}_{n} as the set of all linear combinations
from that set.

Matrix shapes, names of special patterns.

Rank of a matrix.

How an mxn matrix A determines a function L_{A}: R^{n}
--> R^{m} by L_{A}(X) = AX.

Linearity properties of the function L_{A}, that is,
L_{A}(X+Y) = L_{A}(X) + L_{A}(Y) for any X, Y in R^{n},
and L_{A}(rX) = r L_{A}(X) for any X in R^{n} and any r in R.

Definition of Ker(L_{A}) and of Range(L_{A}) = Im(L_{A}) and
how to find them by row reduction methods.

Properties of general functions: one-to-one (injective), onto (surjective), both (bijective), invertible.

Connection between properties of matrix A and function L_{A}.

Defintion of matrix multiplication AB through the definition L_{A}
composed with L_{B} equals L_{AB}. Lemma that L_{A}
= L_{B} iff A=B.

Formula for the matrix product of an mxn matrix A with an nxp matrix B giving an mxp matrix
C = AB whose columns are A(Col_{k}(B)) for k = 1, ..., p.

Defintion of standard basis vectors e_{1},
... , e_{n} in R^{n} and lemma that Ae_{j}
= Col_{j}_{}(A), so AX is the sum of x_{j}
Col_{j}(A).

Abstract definition of a real vector space, V. Examples, R^{m}_{n}
is a vector space. For any set S, the set F = {f : S ---> R} of
all functions from S to the reals R, is a vector space.

Definition of a linear transformation L : V ---> W from a vector space to a vector space. Ker(L), Range(L) = Im(L).

Basic facts about vector spaces and about linear transformations (maps), and examples.

Definition and some examples of subspaces.

Definition of when a square matrix is
invertible, uniqueness of the inverse when it exists, and an
algorithm to decide and find it by row reduction of [A | I_{n}].

Definition of transpose of a matrix, of symmetric and anti-symmetric matrices.

Elementary matrices and how they can be used to achieve elementary row or column operations.

The rules of matrix algebra.

The span of a set of vectors S in a vector space V, and why it forms a subspace of V.

How to check that a subset W in V is a subspace of V.

Linear indepdendence or dependence of a subset of V, definition and method of determining that.

Theorems and examples about spanning and independence, connection with rank of a matrix.

Definition of a basis for a vector space, and how to decide if a subset is a basis of V.

Finding a basis for important examples of subspaces, Ker(L), Range(L), where L:V---> W is a linear map.

Dimension of V as the number of vectors in any basis for V.

The standard basis for several examples of vector spaces, including
all the R^{m}_{n} examples and the vector space of polynomials with
degree at most k.

Row-space and Column-space of a matrix, and their dimension related to the rank of the matrix.

Information about the linear transformation
L_{A}: R^{n}--> R^{m} associated with rank(A).

The relationship between the dimensions of Ker(L), Range(L) and V for L:V---> W.

Extending an independent set to a basis, cutting down a spanning set to a basis.

How to represent a general linear map L:V---> W with respect to a choice of basis S in V and basis T in W by a matrix, that is,

using coordinates
with respect to S, [ . ]_{S}, and coordinates with respect to T, [ . ]_{T}, to find
a matrix _{T}[L]_{S}, such that _{T}[L]_{S} [v]_{S} =
[L(v)]_{T}.

The algorithm for finding that matrix by a row reduction of [T | L(S)].

If S and S' are two bases of V, and T and T' are two bases of W, and L:V---> W then there is a
relationship between _{T}[L]_{S}, the matrix representing L from S to T, and
_{T'}[L]_{S'}, the matrix representing L from S' to T'.

That relationship is _{T'}[L]_{S'} =
_{T'}Q_{T} _{T}[L]_{S} _{S}P_{S'}
where _{S}P_{S'} is the transition matrix from S' to S, and
_{T'}Q_{T} is the transition matrix from T to T'.

The concept of isomorphism (bijective linear map) and its properties.

Use of a basis S of V to give
coordinates with respect to S for each vector v in V. How that coordinate function, [v]_{S},
is a linear map from V to
R^{n} when a basis S for V consists of n vectors.

Transition matrices which give the relationship between the coordinates of a vector
v with respect to different bases. If S and T are two bases of the same vector space, V,
then the transition matrix from S to T is the square invertible matrix _{T}P_{S} such that
[v]_{T} = _{T}P_{S} [v]_{S}.

Material on determinants, their definition using permutations or by cofactor expansion, their properties, and methods of calculating them (definition by permutations or by cofactor expansions, crosshatching method for matrices of size n = 2 or n = 3 ONLY, using row operations).

The use of determinant to get the characteristic polynomial, det(tI_{n} - A), whose roots
give the eigenvalues of A, and whose expression as a product of powers of distinct linear factors
gives the algebraic multiplicities.

Eigenspaces, their properties, and how to decide if a matrix can be diagonalized or not. Theorems about eigenspaces and diagonalizability.

Independence of the union of bases for distinct eigenspaces.

Geometric multiplicity and its relationship to algebraic multiplicity for each eigenvalue.

Definition and properties of the standard dot product in R^{n}: bilinear, symmetric, positive definite.

Definition of length of a vector, ||v||, for v in R^{n}.

Definition of distance between two vectors, ||u-v||.

Definition of the angle a between two
vectors u and v in R^{n} given by the formula cos(a) = u.v/(||u||)(||v||).

Definition of two vectors in R^{n} being orthogonal (perpendicular) when the angle
between them is a right angle (90 degrees = pi/2 radians), so u.v = 0.

The Cauchy-Schwarz inequality |u.v| <= (||u||)(||v||) and the triangle inequality ||u+v|| <= ||u||+||v||.

Orthogonal and orthonormal subsets, projection of a vector onto another vector,
Proj_{v}(u) = (u.v)/(v.v) v.

A real nxn matrix A is called orthogonal when A^{T} = A^{-1}, its transpose is its inverse.

A real nxn matrix A is orthogonal iff the set of its columns is an orthonormal set in R^{n}.

When A is orthogonal, the linear map L_{A}(X) = AX preserves lengths and angles because
(AX).Y = X.(A^{T}Y) for any X and Y in R^{n}.

The geometrical meaning of projection may be helpful but I would not test it on an exam. Skip decomposing forces.

The projection ṽ = Proj_{W}(v) of vector v into subspace W of R^{n} defined to be
a vector in W such that v - ṽ is orthogonal to W.

If T = {w_{1}, ..., w_{m}} is any basis of W,
then ṽ = ∑_{i=1}^{m} x_{i} w_{i} must satisfy (v - ṽ).w_{j} = 0 for
j = 1,..., m, that is the linear system
∑_{i=1}^{m} x_{i} (w_{i}.w_{j}) = v.w_{j} for j = 1,..., m.

Define the mxm symmetric matrix A = [w_{i}.w_{j}] and the mx1 column matrix B = [v.w_{j}].

This system is just AX = B, and it can be shown that A is invertible, so it always has unique solution
X = A^{-1} B which gives the projection.

When basis T is orthogonal, the matrix A is diagonal and the solution is easy giving an explicit formula
Proj_{W}(v) = ∑_{i=1}^{m} (v.w_{i})/(w_{i}.w_{i}) w_{i}
which is even simpler with T orthonormal.

The Best Approximation Theorem, which says that ṽ = Proj_{W}(v) is the unique
vector in W such that ||v - ṽ|| < ||v - w|| for any w in W distinct from ṽ.

The Gram-Schmidt (G-S) orthogonalization process for converting a basis T = {w_{1}, ..., w_{m}}
of a subspace W to an orthogonal basis T' = {w'_{1}, ..., w'_{m}}.

The formula for each vector in T' is w'_{j} = w_{j} - Proj_{W(j-1)}(w_{j})
for j = 2, ..., m, where W(j-1) is the subspace with orthogonal basis {w'_{1}, ..., w'_{j-1}}
and w'_{1} = w_{1} to start the process.

So from the explicit formula for such a projection, we have Proj_{W(j-1)}(w_{j}) =
∑_{i=1}^{j-1} (w_{j}.w'_{i})/(w'_{i}.w'_{i}) w'_{i}

The Pythagorean Theorem in R^{n} which says that for any orthogonal set
T = {w_{1}, ..., w_{m}}, we have ||w_{1}||^{2} + ... + ||w_{m}||^{2} =
||w_{1} + ... + w_{m}||^{2}.

The standard dot product in the complex vector space C^{n} which is sesquilinear, conjugate symmetric
and positive definite.

If Z and W are column vectors in C^{n} then Z.W = Z^{T} W^{-} where
Z^{T} means the transpose of Z and W^{-} means the complex conjugate of W.

The Hermitian conjugate of a complex nxn matrix A is Ā^{T},
the transpose conjugate of A denoted by A^{H}.

For any column vectors Z and W in C^{n} and any complex nxn matrix A, we have (AZ).W = Z.(A^{H}W).

A complex nxn matrix A is called Hermitian when A^{H} = A.
It is called unitary when A^{H} = A^{-1}.

A is unitary iff the set of its columns is an orthonormal set in C^{n}.

We proved that any real symmetric matrix A = A^{T} in R^{n}_{n} has all its
eigenvalues in the real numbers, and that it is diagonalizable by an orthogonal transition matrix P.

We defined the perp of a subset S in R^{n} to be S^{⊥} =
{X in R^{n} | X.s = 0 for all s in S}.

We proved that S^{⊥} = <S>^{⊥}, the perp of S equals the perp of the
span of S. So to get the perp of a subspace, W, just find the perp of a basis for W.

To find the perp of a subset S = {v_{1},...,v_{m}} in R^{n}, just solve AX = 0
where A is the mxn matrix with Row_{i}(A) = v_{i}^{T} for i = 1,...,m.

We defined the sum of subspaces W = W_{1} + ... + W_{m} in any vector space V.

We showed that sum W is a subspace of V, and defined it to be a direct sum when each vector w in W has
a unique expression as w = w_{1} + ... + w_{m} for w_{i} in W_{i}.

We discussed basic examples of sums and direct sums in R^{2} and R^{3}.

We discussed the theorem which says that a sum W (as above) is direct iff the intersection of W_{i}
with the sum of all other W_{j} is only the zero vector, for each i = 1,...,m.

We discussed the theorem that if B_{i} is a basis of W_{i}, then the sum W is direct iff
the long list B of all the vectors in B_{1} ... B_{m} is a basis of W.

We defined a direct sum of subspaces in R^{n} to be an orthogonal direct sum when those subspaces
are mutually orthogonal, that is, W_{i}⊥W_{j} for i≠j.

We proved the theorem that for any subspace W in R^{n}, that W + W^{⊥} = R^{n}.

We applied these ideas to the eigenspaces of a real symmetric nxn matrix A = A^{T}, and showed that
R^{n} is the orthogonal direct sum of all those eigenspaces.

We then got that any real symmetric nxn matrix A is orthogonally diagonalizable, D = P^{T}AP,
for an orthogonal transition matrix P.

Anything covered after the cutoff date for Exam 3 material.

Anything from any part of the course.

This page last modified on 8-23-2021.